DOI QR코드

DOI QR Code

Raman spectroscopy of eutectic melting between boride granule and stainless steel for sodium-cooled fast reactors

  • Hirofumi Fukai (Waseda Research Institute for Science and Engineering, Waseda University) ;
  • Masahiro Furuya (Cooperative Major in Nuclear Energy, Graduate School of Advanced Science and Engineering, Waseda University) ;
  • Hidemasa Yamano (Japan Atomic Energy Agency)
  • Received : 2022.07.12
  • Accepted : 2022.11.16
  • Published : 2023.03.25

Abstract

To understand the eutectic reaction mechanism and the relocation behavior of the core debris is indispensable for the safety assessment of core disruptive accidents (CDAs) in sodium-cooled fast reactors (SFRs). This paper addresses reaction products and their distribution of the eutectic melting/solidifying reaction of boron carbide (B4C) and stainless-steel (SS). The influence of the existence of carbon on the B4C-SS eutectic reaction was investigated by comparing the iron boride (FeB)-SS reaction by Raman spectroscopy with Multivariate Curve Resolution (MCR) analysis. The scanning electron microscopy with dispersive X-ray spectrometer was also used to investigate the elemental information of the pure metals such as Cr, Ni, and Fe. In the B4C-SS samples, a new layer was formed between B4C/SS interface, and the layer was confirmed that the formed layer corresponded to amorphous carbon (graphite) or FeB or Fe2B. In contrast, a new layer was not clearly formed between FeB and SS interface in the FeB-SS samples. All samples observed the Cr-rich domain and Fe and Ni-rich domain after the reaction. These domains might be formed during the solidifying process.

Keywords

Acknowledgement

This work was supported by the "Technical development program on a fast reactor common basis" entrusted to the Japan Atomic Energy Agency (JAEA) by the Ministry of Economy, Trade and Industry (METI).

References

  1. T. Takai, T. Furukawa, H. Yamano, Thermophysical properties of austenitic stainless steel containing boron carbide in a solid state, Mechanical Engineering Journal 8 (2021), 20-00540. https://doi.org/10.1299/mej.20-00540
  2. F. Nagase, H. Uetsuka, T. Otomo, Chemical interactions between B4C and stainless steel at high temperatures, Journal of Nuclear Materials 245 (1997) 52-59. https://doi.org/10.1016/S0022-3115(96)00747-7
  3. M. Takano, T. Nishi, N. Shirasu, Characterization of solidified melt among materials of UO2 fuel and B4C control blade, J. Nucl. Sci. Technol. 51 (2014) 859-875. https://doi.org/10.1080/00223131.2014.912567
  4. T.B. Massalski, Binary Alloy Phase Diagram, ASM International, Ohio, 1990, p. 482.
  5. A. Sudo, T. Nishi, N. Shirasu, M. Takano, M. Kurata, Fundamental experiments on phase stabilities of Fe-B-C tarnary systems, J. Nucl. Sci. Tech. 52 (2015) 1308-1312. https://doi.org/10.1080/00223131.2015.1016465
  6. J. Lentz, A. Rottger, W. Theisen, Solidification and phase formation of alloys in the hypoeutectic region of Fe-C-B system, Acta Materialia 99 (2015) 119-129. https://doi.org/10.1016/j.actamat.2015.07.037
  7. H. Yamano, T. Takai, T. Furukawa, S. Kikuchi, Y. Emura, K. Kamiyama, H. Fukuyama, H. Higashi, T. Nishi, H. Ohta, X. Liu, K. Morita, K. Nakamura, Study on eutectic melting behavior of control rod materials in core disruptive accidents of sodium-cooled fast reactors: (1) Project overview and progress until, in: The 2020 International Conference on Nuclear Engineering (ICONE2020), Online, 2018, V002T08A007.
  8. H. Yamano, T. Takai, T. Furukawa, S. Kikuchi, Y. Emura, K. Kamiyama, H. Fukuyama, H. Higashi, T. Nishi, H. Ohta, K. Morita, K. Nakamura, Study on eutectic melting behavior of control rod materials in core disruptive accidents of sodium-cooled fast reactors: (1) Project overview and progress until, in: The 2021 International Conference on Nuclear Engineering (ICONE28), Online, 2019, V003T12A008.
  9. H. Yamano, T. Takai, T. Furukawa, Post-test material analysis of eutectic melting reaction of boron carbide and stainless steel, Transactions of the Japan Society of Mechanical Engineers 86 (2020), 19-00360.
  10. S. Kikuchi, T. Takai, H. Yamano, K. Sakamoto, Study on eutectic melting behavior of control rod materials in core disruptive accidents of sodium-cooled fast reactors: (2) Kinetic study on eutectic reaction process between stainless with low boron carbide concentration and stainless steel, in The 2021 International Conference on Nuclear Engineering (ICONE28), Online, V003T12A003.
  11. X. Liu, K. Morita, H. Yamano, Study on eutectic melting behavior of control rod materials in core disruptive accidents of sodium-cooled fast reactors: (4) Validation of a multi-phase model for eutectic reaction between stainless steel and boron carbide, in The 2020 International Conference on Nuclear Engineering (ICONE2020), Online, V002T08A019.
  12. S. Kikuchi, H. Yamano, K. Nakamura, Study on eutectic melting behavior of control rod materials in core disruptive accidents of sodium-cooled fast reactors: (3) Kinetic study of boron carbide-stainless steel eutectic melting by differential thermal analysis, in The 2020 International Conference on Nuclear Engineering (ICONE2020), Online, V002T08A004.
  13. S. Kikuchi, K. Nakamura, H. Yamano, Kinetic study on eutectic reaction between boron carbide and stainless steel by differential thermal analysis, Mechanical Engineering Journal 8 (2021), 20-00542.
  14. T. Sumita, K. Urata, Y. Morita, Y. Kobayashi, Dissolution behavior of core structure materials by molten corium in boiling water reactor plants during severe accidents, Journal of Nuclear Science and Technology 55 (2018) 267-275. https://doi.org/10.1080/00223131.2017.1394234
  15. T. Sumita, Y. Kobayashi, Investigation of corrosion-erosion behavior of stainless steel considering SS-B4C melt, Journal of Nuclear Materials 515 (2019) 71-79. https://doi.org/10.1016/j.jnucmat.2018.12.026
  16. T. Sumita, Y. Kobayashi, Dissolution behavior of solid stainless steel by its molten eutectic mixture with B4C under dynamic condition, Progress in Nuclear Energy 117 (2019), 103094.
  17. A. Pshenichnikov, Y. Nagae, M. Kurata, Raman characterization of the simulated control blade debris to understand the boric compounds transformations during severe accidents, Mechanical Engineering Journal 7 (2020), 19-00477. https://doi.org/10.1299/mej.19-00477
  18. M. Ando, H. Hamaguchi, Molecular component distribution imaging of living cells by multivariate curve resolution analysis of space-resolved Raman spectra, Journal of Biomedical Optics 19 (2014), 011016, 2014.
  19. S. Elumalai, S. Manago, A.C.D. Luca, Raman microscopy: progress in research on cancer cell sensing, Sensors 20 (2020) 5525.
  20. H. Shibata, K. Sakamoto, A. Ouchi, M. Kurata, Chemical interaction between granular B4C and 304L-type stainless steel materials used in BWRs in Japan, Journal of Nuclear Science and Technology 52 (2015) 1313-1317. https://doi.org/10.1080/00223131.2015.1011721
  21. M. Aizenshtein, I. Mizrahi, N. Froumin, S. Hayun, M.P. Dariel, N. Frage, Interface reaction in the B4C/(Fe-B-C) system, Materials Science and Engineering A 495 (2008) 70-74. https://doi.org/10.1016/j.msea.2007.06.100
  22. T. Sumita, T. Kitagaki, M. Takano, A. Ikeda-Ohno, Solidification and re-melting mechanisms of SUS-B4C eutectic mixture, Journal of Nuclear Materials 543 (2021), 152527.