DOI QR코드

DOI QR Code

Simple Preparation of One-dimensional Metal Selenide Nanomaterials Using Anodic Aluminum Oxide Template

  • Piao, Yuanzhe (Graduate School of Convergence Science and Technology, Seoul National University)
  • Received : 2012.03.01
  • Accepted : 2012.03.29
  • Published : 2012.03.30

Abstract

Highly ordered and perforated anodic aluminum oxide membranes were prepared by anodic oxidation and subsequent removal of the barrier layer. By using these homemade anodic aluminum oxide membranes as templates, metal selenide nanowires and nanotubes were synthesized. The structure and composition of these one-dimensional nanomaterials were studied by field emission scanning electron microscopy as well as transmission electron microscopy and energy dispersive X-ray spectroscopy. The growth process of metal selenide inside anodic aluminum oxide channel was traced by investigating the series of samples using scanning electron microscopy after reacting for different times. Straight and dense copper selenide and silver selenide nanowires with a uniform diameter were successfully prepared. In case of nickel selenide, nanotubes were preferentially formed. Phase and crystallinity of the nanostructured materials were also investigated.

Keywords

References

  1. G. Schmid, Nanoparticles: From Theory to Application, Wiley-VCH, Weinheim, (2004).
  2. T. Hyeon, Chem. Commun., 927 (2003).
  3. L. Cushing, V.L. Kolesnichenko and C.J. O'Connor, Chem. Rev., 104, 3893 (2004). https://doi.org/10.1021/cr030027b
  4. M.-C. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004). https://doi.org/10.1021/cr030698+
  5. C. Burda, X. Chen, R. Narayanan and M.A. El-Sayed, Chem. Rev., 105, 1025 (2005). https://doi.org/10.1021/cr030063a
  6. T. Iwasaki, T. Motoi and T. Den, Appl. Phys. Lett., 75, 2044 (1999). https://doi.org/10.1063/1.124910
  7. M. Nagale, B.Y. Kim and M.L. Bruening, J. Am. Chem. Soc., 122, 11670 (2000). https://doi.org/10.1021/ja002203t
  8. S. Rahman and H. Yang, Nano Lett., 3, 439 (2003). https://doi.org/10.1021/nl0259479
  9. K.L. Hobbs, P.R. Larson, G.D. Lian, J.C. Keay and M.B. Johnson, Nano Lett., 4, 167 (2004). https://doi.org/10.1021/nl034835u
  10. T. Yanagishita, Y. Tomabechi, K. Nishio and H. Masuda, Langmuir, 20, 554 (2004). https://doi.org/10.1021/la030314a
  11. S. Setch and A. Miyata, Sci. Pap. Inst. Phys. Chem. Res., 19, 237 (1932).
  12. H. Masuda and K. Fukuda, Science, 268, 1466 (1995). https://doi.org/10.1126/science.268.5216.1466
  13. H. Masuda and M. Satoh, Jpn. J. Appl. Phys., 35, L126 (1996). https://doi.org/10.1143/JJAP.35.L126
  14. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao and T. Tamamura, Appl. Phys. Lett., 71, 2770 (1997). https://doi.org/10.1063/1.120128
  15. O. Jessensky, F. Muller and U. Gosele, Appl. Phys. Lett., 72, 1173 (1998). https://doi.org/10.1063/1.121004
  16. H. Masuda, K. Yada and A. Osaka, Jpn. J. Appl. Phys., 37, L1340 (1998). https://doi.org/10.1143/JJAP.37.L1340
  17. A. P. Li, F. Muller, A. Birner, K. Nielsch and U. Gosele, J. Appl. Phys., 84, 6023 (1998). https://doi.org/10.1063/1.368911
  18. O. Jessensky, F. Müller and U. Gösele, J. Electrochem. Soc., 145, 3735 (1998). https://doi.org/10.1149/1.1838867
  19. H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao and T. Tamamura, Adv. Mater., 13, 189 (2001). https://doi.org/10.1002/1521-4095(200102)13:3<189::AID-ADMA189>3.0.CO;2-Z
  20. I. Mikulskas, S. Juodkazis, R. Tomainas and J.G. Dumas, Adv. Mater., 13, 1574 (2001). https://doi.org/10.1002/1521-4095(200110)13:20<1574::AID-ADMA1574>3.0.CO;2-9
  21. H. Masuda, K. Kanezawa and K. Nishio, Chem. Lett., 12, 1218 (2002).
  22. S.-Z. Chu, K. Wada, S. Inoue, M. Isogai and A. Yasumori, Adv. Mater., 17, 2115 (2005). https://doi.org/10.1002/adma.200500401
  23. W. Lee, R. Ji, U. Gosele and K. Nielsch, Nature Mater., 5, 741 (2006). https://doi.org/10.1038/nmat1717
  24. J. Li, C. Papadopoulos and J. Xu, Nature, 402, 253 (1999).
  25. K. Nielsch, F. Muller, A.-P. Li and U. Gosele, Adv. Mater., 12, 582 (2000). https://doi.org/10.1002/(SICI)1521-4095(200004)12:8<582::AID-ADMA582>3.0.CO;2-3
  26. M. Steinhart, J.H. Wendorff, A. Greiner, R.B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi and U. Gosele, Science, 296, 1997 (2002). https://doi.org/10.1126/science.1071210
  27. W. Lee, J.K. Lee, Adv. Mater., 14, 1187 (2002). https://doi.org/10.1002/1521-4095(20020903)14:17<1187::AID-ADMA1187>3.0.CO;2-X
  28. K. Matsui, T. Kyotani and A. Tomita, Adv. Mater., 14, 1216 (2002). https://doi.org/10.1002/1521-4095(20020903)14:17<1216::AID-ADMA1216>3.0.CO;2-A
  29. C.R. Martin and P. Kohli, Nature Rev. Drug. Discov., 2, 29 (2003). https://doi.org/10.1038/nrd988
  30. H.-M. Zhang, Y.-G. Guo, L.-J. Wan and C.-L. Bai, Chem. Commun., 3022 (2003).
  31. N.I. Kovtyukhova, T.E. Mallouk and T.S. Mayer, Adv. Mater., 15, 780 (2003). https://doi.org/10.1002/adma.200304701
  32. P. Goring, E. Pippel , H. Hofmeister, R.B. Wehrspohn, M. Steinhart and U. Gosele, Nano Lett., 4, 1121 (2004). https://doi.org/10.1021/nl049542v
  33. N.I. Kovtyukhova, B.K. Kelley and T.E. Mallouk, J. Am. Chem. Soc., 126, 12738 (2004). https://doi.org/10.1021/ja046033m
  34. Q. Lu, F. Gao, S. Komarneni and T.E. Mallouk, J. Am. Chem. Soc., 126, 8650 (2004). https://doi.org/10.1021/ja0488378
  35. S. Hou, C.C. Harrell, L. Trofin, P. Kohli and C.R. Martin, J. Am. Chem. Soc., 126, 5674 (2004). https://doi.org/10.1021/ja049537t
  36. S. Hou, J. Wang and C.R. Martin, J. Am. Chem. Soc., 127, 8586 (2005). https://doi.org/10.1021/ja042343t
  37. N.I. Kovtyukhova and T.E. Mallouk, Adv. Mater., 17, 187 (2005). https://doi.org/10.1002/adma.200400874
  38. S.I. Cho, W.J. Kwon, S.-J. Choi, P. Kim, S.-A. Park, J. Kim, S.J. Son, R. Xiao, S.-H. Kim and S.B. Lee, Adv. Mater., 17, 171 (2005). https://doi.org/10.1002/adma.200400499
  39. J.A. Sioss and C.D. Keating, Nano Lett., 5, 1779 (2005). https://doi.org/10.1021/nl051370u
  40. L. Zhao, M. Yosef, E. Pippel, H. Hofmeister, M. Steinhart, U. Gösele, and S. Schlecht, Angew. Chem. Int. Ed., 45, 8042 (2006). https://doi.org/10.1002/anie.200602093
  41. L. Zhao, M. Yosef, M. Steinhart, P. Göring, H. Hofmeister, U. Gösele and S. Schlecht, Angew. Chem. Int. Ed., 45, 311 (2006). https://doi.org/10.1002/anie.200502665
  42. A.L.N. Stevels and F. Jellinek, Recueil. 111, 273 (1971).
  43. H. Okimura, T. Matsumae and R. Makabe, Thin Solid Films, 71, 53 (1980). https://doi.org/10.1016/0040-6090(80)90183-2
  44. W.S. Chen, J.M. Stewart and R.A. Mickelsen, Appl. Phys. Lett., 46, 1095 (1985). https://doi.org/10.1063/1.95773
  45. R.C. Kainthla, D.K. Pandya and K.L. Chopra, J. Electrochem. Soc., 127, 277 (1980). https://doi.org/10.1149/1.2129655
  46. C. Levy-Clement, M. Neumann-Spallart, S.K. Haram and K.S.V. Santhanam, Thin Solid Films, 302, 12 (1997). https://doi.org/10.1016/S0040-6090(97)00021-7
  47. S.K. Haram and K.S.V. Santhanam, Thin Solid Films, 238, 21 (1994). https://doi.org/10.1016/0040-6090(94)90642-4
  48. M. Lakshmi, K. Bindu, S. Bini, K.P. Vijayakumar, C. Sudha Kartha, T. Abe and Y. Kashiwaba, Thin Solid Films, 386, 127 (2001). https://doi.org/10.1016/S0040-6090(00)01783-1
  49. Z.P. Qiao, Y. Xie, J.G. Xu, X.M. Liu, Y.J. Zhu and Y.T. Qian, Can. J. Chem., 78, 1143 (2000).
  50. J.J. Zhu, O. Palchik, S.G. Chen and A. Gedanken, J. Phys. Chem. B., 104, 7344 (2000). https://doi.org/10.1021/jp001488t
  51. T. Ohtani, T. Nonaka and M. Araki, J. Solid. State Chem., 138, 131 (1998). https://doi.org/10.1006/jssc.1998.7763
  52. B. Li, Y. Xie, J. Huang and Y. Qian, Ultrasonics Sonochem., 6, 217 (1999). https://doi.org/10.1016/S1350-4177(99)00013-9
  53. W.Z. Wang, Y. Geng, P. Yan, F. Liu, Y. Xie and Y.T. Qian, J. Am. Chem. Soc., 121, 4062 (1999). https://doi.org/10.1021/ja9832414
  54. H.L. Su, Y. Xie, B. Li and Y.T. Qian, Mater. Res. Bull., 35, 465 (2000). https://doi.org/10.1016/S0025-5408(00)00233-6
  55. S.-Y. Zhang, C.-X. Fang, Y.-P. Tian, K.-R. Zhu, B.-K. Jin, Y.-H. Shen and J.-X. Yang, Cryst. Growth Des., 6, 2809 (2006) https://doi.org/10.1021/cg0604430
  56. R. Seoudi, A.A. Shabaka, M.M. Elokr and A. Sobhi, Mater. Lett., 61, 3451 (2007). https://doi.org/10.1016/j.matlet.2006.11.087
  57. M. Kobayashi, Solid State Ionics, 39, 121 (1990). https://doi.org/10.1016/0167-2738(90)90392-5
  58. D. Grientschnig and W. Sitte, J. Phys. Chem. Solids, 52, 805 (1991). https://doi.org/10.1016/0022-3697(91)90079-F
  59. K.L. Lewis, A.M. Pitt, P. Wyatt-Davies and J.R. Milward, Mater. Res. Soc. Symp. Proc., 374, 105 (1994). https://doi.org/10.1557/PROC-374-105
  60. T. Akoto, H. Hasuda, M. Ashizawa and T. Hori, Jpn. Kokai Tokyo Kaho, JP 04.171,681.
  61. B. Nesie and M.S. Jovanovic, J. Serb. Chem. Soc., 56, 353 (1991).
  62. R.G. Lope and H.J. Goldsmit, J. Appl. Phys., 76, 1501 (1995).
  63. R. Chen, D. Xu, G. Guo and Y. Tang, J. Mater. Chem., 12, 1437 (2002). https://doi.org/10.1039/b107177g
  64. Y.J. Glanville, D.G. Narehood, P.E. Sokol, A. Amma and T. Mallouk, J. Mater. Chem., 12, 2433 (2002). https://doi.org/10.1039/b202913h
  65. R. Harpeness, O. Palchik, A. Gedanken, V. Palchik, S. Ameil, M.A. Slifkin and A.M. Weiss, Chem. Mater., 14, 2094 (2002). https://doi.org/10.1021/cm010810p
  66. J. Xiao, Y. Xie, R. Tang and W. Luo, J. Mater. Chem., 12, 1148 (2002). https://doi.org/10.1039/b110249d
  67. P.K. Khanna and B.K. Das, Mater. Lett., 58, 1030 (2004). https://doi.org/10.1016/j.matlet.2003.08.007
  68. D.T. Schoen, C. Xie and Y. Cui, J. Am. Chem. Soc., 129, 4116 (2007). https://doi.org/10.1021/ja068365s
  69. S.-Y. Zhang, C.-X. Fang, W. Wei, B.-K. Jin, Y.-P. Tian, Y.-H. Shen, J.-X. Yang and H.-W. Gao, J. Phys. Chem. C, 111, 4168 (2007). https://doi.org/10.1021/jp067425d
  70. W.S. Sheldrick and M. Wachhold, Angew. Chem. Int. Ed., 36, 206 (1997). https://doi.org/10.1002/anie.199702061
  71. Y. Wang and N. Herron, J. Phys. Chem., 95, 525 (1991). https://doi.org/10.1021/j100155a009
  72. J.M. Honig and J. Spalek, Chem. Mater., 10, 2910 (1998). https://doi.org/10.1021/cm9803509
  73. C.E.M. Campos, J.C. de Lima, T.A. Grandi, K.D. Machado, J.P. Itie and A. Polian, J. Solid State Chem., 178, 93 (2005). https://doi.org/10.1016/j.jssc.2004.10.006
  74. V.L. Miller, W.-l. Lee, G. Lawes, N.-P. Ong and R.J. Cava, J. Solid State Chem., 178, 1508 (2005). https://doi.org/10.1016/j.jssc.2004.11.013
  75. J. Yang, G. Cheng, J. Zeng, S. Yu, X. Liu and Y. Qian, Chem. Mater., 13, 848 (2001). https://doi.org/10.1021/cm0005945
  76. Y. Liu, J. Cao, C. Li, J. Zeng, K. Tang, Y. Qian and W. Zhang, J. Crystal Growth, 261, 508 (2004). https://doi.org/10.1016/j.jcrysgro.2003.08.079
  77. A. Zhao, L. Xu, T. Luo and Y. Qian, Chem. Lett., 34, 1136 (2005). https://doi.org/10.1246/cl.2005.1136
  78. Y. Piao and H. Kim, Chem. Commun., 2898 (2003).
  79. Y. Piao, H. Lim, J.Y. Chang, W.-Y. Lee and H. Kim, Electrochim. Acta, 50, 2997 (2005). https://doi.org/10.1016/j.electacta.2004.12.043
  80. W. Ju, X. Zhang and S. Wu, Chem. Lett., 34, 510 (2005). https://doi.org/10.1246/cl.2005.510
  81. X. Zhang, W. Ju, M. Gu, X. Meng, W. Shi, X. Zhang and S. Lee, Chem. Commun., 4202 (2005).
  82. Y. Mao and S.S. Wong, J. Am. Chem. Soc., 126, 15245 (2004). https://doi.org/10.1021/ja046331j
  83. X.-J. Lu, X.-W. Wei, J. Sun, Y.-H. Ni, G.-C. Zhao and Y. Ye, Chem. Lett., 33, 1384 (2004). https://doi.org/10.1246/cl.2004.1384
  84. C. Sun, P. Chen and S. Zhou, Mater. Lett., 61, 1645 (2007). https://doi.org/10.1016/j.matlet.2006.07.091
  85. W. Chen and X.-H. Xia, ChemPhysChem, 8, 1009 (2007). https://doi.org/10.1002/cphc.200600711
  86. S.P. Mondal, K. Das, A. Dhar and S.K. Ray, Nanotech., 18, 095606 (2007). https://doi.org/10.1088/0957-4484/18/9/095606
  87. A. Mozalev, S. Magaino and H. Imai, Electrochim. Acta, 46, 2825 (2001). https://doi.org/10.1016/S0013-4686(01)00497-2
  88. D.L. Klyaman and T.S. Griffin, J. Am. Chem. Soc., 95, 197 (1973). https://doi.org/10.1021/ja00782a034

Cited by

  1. Synthesis of ultralong NiSe nanobelts and their excellent adsorption properties towards malachite green in water vol.6, pp.106, 2016, https://doi.org/10.1039/C6RA23119E