• Title/Summary/Keyword: new packaging technology

Search Result 225, Processing Time 0.027 seconds

Modified Atmosphere Packaging of Minimally Processed Cut Garlic (최소가공된 절단 마늘의 환경기체조절포장)

  • Kwon, Min-Ji;Shin, Yong-Jae;Lee, Dong-Sun;An, Duck-Soon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.17 no.1
    • /
    • pp.13-17
    • /
    • 2011
  • There is a need in food industry to store minimally processed garlic for long time to have it be used just at the time of demand for final product processing. Optimal modified atmosphere packaging is expected to slow down the quality change extending its storage life. In order to find optimal packaging conditions, plastic films of different gas permeability properties (low density polyethylene (LDPE) $30{\mu}m$, polyolefin $50{\mu}m$ (PD 900), polyolefin $20{\mu}m$ (PD 941)) were used for packaging 400 g of minimally processed garlic. Perforated LDPE packages were prepared as control. The packaged products were stored at $1{\pm}1^{\circ}C$ for 52 days. Package treatments were compared in weight loss, decay, surface color, hardness and soluble solid content. While control package had normal atmosphere of air, LDPE, PD 900 and PD 941 packages attained internal concentration of $O_2$ 4.6% / $CO_2$ 12%, $O_2$ 0.9% / $CO_2$ 21% and $O_2$ 0.5% / $CO_2$ 13% after 45 days, respectively. Control packaging had rapid weight loss with high mold decay and great surface color change in 45 days. In PD 900 film packages of lowest gas permeability, the fresh-cut garlic could be stored without mold decay for 52 days. Except control packaging, there were no significant differences in surface color, hardness and soluble solid content among package treatments.

  • PDF

Research trends and views for insect-proof food packaging technologies (해충유입 방지를 위한 방충포장기법의 연구 동향 및 전망)

  • Chang, Yoonjee;Na, Ja-hyun;Han, Jaejoon
    • Food Science and Industry
    • /
    • v.50 no.2
    • /
    • pp.2-11
    • /
    • 2017
  • Packaging is the last defensive barrier that protects food products from insect infestation during storage. However, though packaging films are hermetically sealed, insects can still be attracted by strong olfactory cues and penetrate through packaging materials, resulting in contamination. Insect contamination may cause consumers to be repulsed by contaminated food products. Especially, it is well known that stored-product insects cause critical problems in the cereal industry by inducing quantitative and qualitative damages to the grain products. The contaminations are caused by insects' metabolic byproducts and body parts, consequentially caused customer repulsion. Therefore, it is necessary to repel and control insects. However, management systems for storage insects in food industry have been inadequate for many years. Synthetic pesticides has been widely used, but pesticides may accumulate in foods, causing acute and chronic symptoms in consumers. For this reason, there is a growing need for the development of natural insecticides that can replace synthetic pesticides. Thus, various reports about anti-insect packaging materials and strategies to repel insects were introduced in this study. Furthermore, we suggested new strategies to develop an insect-repelling active packaging materials which could be applied in the food packaging industry.

Technology of Flexible Semiconductor/Memory Device (유연 반도체/메모리 소자 기술)

  • Ahn, Jong-Hyun;Lee, Hyouk;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • Recently flexible electronic devices have attracted a great deal of attention because of new application possibilities including flexible display, flexible memory, flexible solar cell and flexible sensor. In particular, development of flexible memory is essential to complete the flexible integrated systems such as flexible smart phone and wearable computer. Research of flexible memory has primarily focused on organic-based materials. However, organic flexible memory has still several disadvantages, including lower electrical performance and long-term reliability. Therefore, emerging research in flexible electronics seeks to develop flexible and stretchable technologies that offer the high performance of conventional wafer-based devices as well as superior flexibility. Development of flexible memory with inorganic silicon materials is based on the design principle that any material, in sufficiently thin form, is flexible and bendable since the bending strain is directly proportional to thickness. This article reviews progress in recent technologies for flexible memory and flexible electronics with inorganic silicon materials, including transfer printing technology, wavy or serpentine interconnection structure for reducing strain, and wafer thinning technology.

Cantilever Structural Analysis for Optimal Piezoelectric Power Harvesting (캔틸레버 구조해석을 통한 압전소자의 최대 전력량 산출)

  • Lim, Geunsu;Joe, Sungsik;Kim, Suhyun;Park, Woo-Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.31-34
    • /
    • 2013
  • Based on the structural analysis of cantilever and the piezoelectric effect, we propose a new design of piezoelectric cantilever to harvest maximum vibration energy. Geometric parameters of piezoelectric cantilever are optimized according to two different types of cantilever structure. The main factors that affect the harvesting performance of the cantilever was the shape of the cantilever and the load at the free end. The amount of charge is affected by piezoelectric constant and mechanical strain of the cantilever.

Manufacturing yield challenges for wafer-to-wafer integration (Wafer-to-Wafer Integration을 위한 생산수율 챌린지에 대한 연구)

  • Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 2013
  • Wafer-to-Wafer (W2W) integration technology is an emerging technology promising many benefits, such as reduced size, improved performance, reduced power, lower cost, and divergent integration. As the maturity of W2W technology progresses, new applications will become more viable. However, at present the cost for W2W integration is still very high and both manufacturing yield and reliability issues have not been resolved yet for high volume manufacturing (HVM). Especially for WTW integration resolving compound yield issue can be a key factor for HVM. To have the full benefits of WTW integration technology more than simple wafer stacking technologies are necessary. In this paper, the manufacturing yield for W2W integration is described and the challenges of WTW integration will be discussed.

Biological Treatment of OCC Flake in Fine Screen Rejects for Recovery of Fibrous Materials (생물학적 처리에 의한 OCC 스크린 리젝트 내 미해리분의 재활용)

  • Sung Yong Joo;Ryu Jeong-Yong;Song Bong Keun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.1 s.109
    • /
    • pp.17-24
    • /
    • 2005
  • The increase of using low grade ace, the unsorted mixed grade, as fibrous raw materials for the packaging paper results in the increment of fine screen reject owing to the strong tendency to reduce the slot width. Since the most of screen reject consists of undispersed fiber flake, the suitable treatment of the flake could increase the yield of ace recycling and decrease the amount of solid waste. In this work, the novel method combined the mild mechanical treatment by using Tumbling pulper with the biological treatment was developed and applied to the wet strength flake and the fine screen tail line reject originated from a packaging paper mill. The results showed the new method could provide much better efficiency for the disintegration of undispersed flake and for the recovery of fiber from the rejects. The application of the laboratory scaled-Pack pulper showed the possible separation technique for mill application by fractioning effectively the fiber from the treated solid waste.

Double Side SMT and Molding Process Development for mPossum Package

  • Kim, ByongJin;Cho, EunNaRa;Kim, ChoongHoe;Lee, YoungWoo;Lee, JaeUng;Ryu, DongSu;Jung, GyuIck;Kang, DaeByoung;Khim, JinYoung;Yoon, JuHoon;Kim, Sun-Joong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.43-48
    • /
    • 2016
  • 3-Dimensional System in Package (3-D SiP) structure (Amkor calls it mPossum-molded Possum) using double side Surface Mount Technology (SMT) and double side molding was evaluated in order to achieve small/thin form factor as well as good functionality by integration and double side layout. As the new platform on laminate substrate basis, molding process was challenge in mold flow balance at top and bottom side and package warpage control over the overall assembly process. There were two types of different molding process evaluated with 1) 1-step molding which was done at both side at the same time and 2) 2-step molding which was done at the conventional molding process twice. Mold simulation helped to narrow down the material selections and parameters available before actual sample build. There were many challenges for this first trial in design/ parameter and material types but optimized them to enable this structure.

New Packaging and Characteristics of PIN PD for CWDM Transmission (저밀도 파장분할 다중화용 PIN PD 제작 및 특성)

  • Kang, Jae-Kwang;Chang, Jin-Heyon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.323-330
    • /
    • 2005
  • We fabricate PIN PD (Positive Intrinsic Negative Photo-Diode) for CWDM optical repeater and optical transmission system, and analyze theoretically the characteristics to verify the capability of device fabricated. Furthermore, we integrate CWDM filter into PD package to enhance the cost and the performance when compared to the conventional system, in which CWDM filter and PD package are linked by optical fusion splicing. The integrated CWDM PD is fabricated by three steps as follows: CWDM filter design, PD packaging, and product assembly and test. The results of measurement for PD fabricated reveal 0.5 dB bandwidth of 17 nm, isolation over 60 dB at transmission port and over 20 dB at reflection port. Also, the IMD3 for wireless communication is over 63 dBc, and the responsivity of PD presents over 0.9 A/W for 20 samples of the total 23 PD. The total insertion loss reduces about 0.4${\~}$0.7 dB due to the integrated assembly of CWDM and PD.

  • PDF

Effect of MeOH/IPA Ratio on Coating and Fluxing of Organic Solderability Preservatives (유기 솔더 보존제의 코팅 및 플럭싱에 대한 메탄올/이소프로필알콜 비율의 영향)

  • Lee, Jae-Won;Kim, Chang Hyeon;Lee, Hyo Soo;Huh, Kang Moo;Lee, Chang Soo;Choi, Ho Suk
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.402-407
    • /
    • 2008
  • Recent popularity in mobile electronics requires higher standard on the mechanical strength of electronic packaging. Thus, the method of soldering between chip and substrate in electronic packaging process is changing from conventional method using intermetallic compound to a new method using organic solderability preservative (OSP) in order to improve the stability and the reliability of final product. Since current organic solder preservatives have several serious problems like thermo-stability during packaging process, however, it is necessary to develop new OSPs having thermo-stability. The main purpose of this study is to investigate the effect of MeOH/IPA (Isopropyl alcohol) ratio on the fluxing of a new OSP, developed in previous research, andto find out an optimum formulation of flux components for the application of the OSP in current packaging process. As a result of this study, it was revealed that higher MeOH/IPA ratio in flux showed better performance of fluxing a new OSP.

The New Generation Laser Dicing Technology for Ultra Thin Si wafer

  • Kumagai, Masayoshi;Uchiyama, N.;Atsumi, K.;Fukumitsu, K.;Ohmura, E.;Morita, H.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2006.10a
    • /
    • pp.125-134
    • /
    • 2006
  • Process & mechanism $\blacklozenge$ The process consists from two steps which are laser processing step and separation steop. $\blacklozenge$ The wavelength of laser beam is transmissible wavelength for the wafer. However, inside of Si wafer is processed due to temperature dependence of optical absorption coefficient Advantage & Application $\blacklozenge$ Advantages are high speed dicing, no debris contaminants, completely dry process, etc. $\blacklozenge$ The cutting edges were fine, The lifetime and endurances did not degrade the device characteristics $\blacklozenge$ A separation of a wafer with DAF was introduced as an application for SiP

  • PDF