The New Generation Laser Dicing Tehcnology for Ultra Thin Si wafer

Masayoshi Kumagai (Hamamatsu Photonics/Japan)

ISMP2006

New Generation Laser Dicing Technology for Ultra Thin Si Wafer

M. Kumagai, N. Uchiyama,K. Atsumi, K. Fukumitsu, E. Ohmura*, H. Morita

Hamamatsu Photonics K.K.
*Osaka Univ.

1

ISMP2006

SDE

Background

- **♦INHERENT PROBLEM of BLADE DICING**
 - ■undesirable mechanical stress

>It is difficult that dicing processing speed become higher or wafer thickness become thinner.

But, Wafer will be thinner

100 μm \Rightarrow 50 μm \Rightarrow 30 μm

>>> LASER DICING!!

2

ISMP2006 **Laser Dicing Stealth Dicing (SD) Ablation method Processing** Processing on the surface in the inside **Debris** ())))))), Wafer ■Debris contamination ■No debris contamination Cleaning process ■No cleaning process ■Cut loss ■Less cut loss

ISMP2006

Advantages of SD

- 1. High Speed dicing for thinner wafers without chipping.
- No debris contaminants and no creating damages on the surface.
- 3. Completely dry process.

4

ISMP2006

Summary

Process & mechanism

- ◆The process consists from two steps which are laser processing step and separation step.
- ◆The wavelength of laser beam is transmissible wavelength for the wafer. However, inside of Si wafer is processed due to temperature dependence of optical absorption coefficient

15

ISMP2006

Summary

Advantage & Application

- ◆Advantages are high speed dicing, no debris contaminants, completely dry process, etc.
- ◆The cutting edges were fine. The lifetime and endurances did not degrade the device characteristics
- ◆A separation of a wafer with DAF was introduced as an application for SiP

16