DOI QR코드

DOI QR Code

Cantilever Structural Analysis for Optimal Piezoelectric Power Harvesting

캔틸레버 구조해석을 통한 압전소자의 최대 전력량 산출

  • Lim, Geunsu (Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology) ;
  • Joe, Sungsik (Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology) ;
  • Kim, Suhyun (Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology) ;
  • Park, Woo-Tae (Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology)
  • 임근수 (서울과학기술대학교 기계.자동차공학과) ;
  • 조성식 (서울과학기술대학교 기계.자동차공학과) ;
  • 김수현 (서울과학기술대학교 기계.자동차공학과) ;
  • 박우태 (서울과학기술대학교 기계.자동차공학과)
  • Received : 2013.12.05
  • Accepted : 2013.12.27
  • Published : 2013.12.30

Abstract

Based on the structural analysis of cantilever and the piezoelectric effect, we propose a new design of piezoelectric cantilever to harvest maximum vibration energy. Geometric parameters of piezoelectric cantilever are optimized according to two different types of cantilever structure. The main factors that affect the harvesting performance of the cantilever was the shape of the cantilever and the load at the free end. The amount of charge is affected by piezoelectric constant and mechanical strain of the cantilever.

외팔보의 형상적인 해석과 압전효과에 의거하여, 최대 전력량 산출을 위한 에너지 수확기를 설계하였다. 두가지의 외팔보 형상으로 에너지 수확기의 구조가 설계되었다. 에너지 수확기의 성능을 좌우하는 주요 변수는 외팔보 형상과 끝단에 부착된 질량이다. 수확되는 전하량은 압전재료의 압전상수와 외팔보의 기계적인 변형량에 비례한다.

Keywords

References

  1. J. P. Lynch and K. J. Loh, "A sumary review of wireless sensors and sensor networks for structural health monitoring", Shock Vib. Dig., 38, 91 (2006). https://doi.org/10.1177/0583102406061499
  2. S. Roundy, P. K. Wright and J. M. Rabaey, "Energy scavenging for wireless sensor networks with special focus on vibrations", Kluwer academic publishers, 219, Norwell (2004).
  3. S. Lee, B. D. Youn and B. C. Jung, "Robust segment-type energy harvester and its application to a wireless sensor", Smart Mater. Struct., 18(9) 12 (2009).
  4. Y.-J. Yoon, W.-T. Park, K H Li, YQ Ng, Y. Song, "A study of piezoelectric harvesters for low-level vibrations in wireless sensor networks", IJPEM (International Journal of Precision Engineering and Manufacturing), 14(7), 1257 (2013). https://doi.org/10.1007/s12541-013-0171-2
  5. J.-R. Yoon, C.-B. Lee and B.-C. Woo, "Fabrication and Electrical Properties of Piezoelectric Inverter Module using Piezoelectric Transformer", J. Microelectron. Packag. Soc., 16(1) 39, (2009).
  6. J. S. Koh, Y. H. Kim, H. S. Kim, S. H. Cho and S. C. Choi, "Ultrasonic Spray Nozzle with Piezoelectric Device for Chemical Dispersion", J. Microelectron. Packag. Soc., 10(4) 65 (2003).
  7. S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, P. K. Wright, V. Sundararajan, "Improving power output for vibration based energy scavengers", IEEE Pervas. Comput. 5, 28 (2005).