• Title/Summary/Keyword: neuro fuzzy system

Search Result 399, Processing Time 0.023 seconds

On-Line Travel Time Estimation Methods using Hybrid Neuro Fuzzy System for Arterial Road (검지자료합성을 통한 도시간선도로 실시간 통행시간 추정모형)

  • 김영찬;김태용
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.171-182
    • /
    • 2001
  • Travel Time is an important characteristic of traffic conditions in a road network. Currently, there are so many road users to get a unsatisfactory traffic information that is provided by existing collection systems such as, Detector, Probe car, CCTV and Anecdotal Report. This paper presents the results achieved with Data Fusion Model, Hybrid Neuro Fuzzy System for on - line estimation of travel times using RTMS(Remote Traffic Microwave Sensor) and Probe Data in the signalized arterial road. Data Fusion is the most important process to compose the various of data which can present real value for traffic situation and is also the one of the major process part in the TIC(Traffic Information Center) for analyzing and processing data. On-line travel time estimation methods(FALEM) on the basis of detector data has been evaluated by real value under KangNam Test Area.

  • PDF

Utilizing Soft Computing Techniques in Global Approximate Optimization (전역근사최적화를 위한 소프트컴퓨팅기술의 활용)

  • 이종수;장민성;김승진;김도영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.449-457
    • /
    • 2000
  • The paper describes the study of global approximate optimization utilizing soft computing techniques such as genetic algorithms (GA's), neural networks (NN's), and fuzzy inference systems(FIS). GA's provide the increasing probability of locating a global optimum over the entire design space associated with multimodality and nonlinearity. NN's can be used as a tool for function approximations, a rapid reanalysis model for subsequent use in design optimization. FIS facilitates to handle the quantitative design information under the case where the training data samples are not sufficiently provided or uncertain information is included in design modeling. Properties of soft computing techniques affect the quality of global approximate model. Evolutionary fuzzy modeling (EFM) and adaptive neuro-fuzzy inference system (ANFIS) are briefly introduced for structural optimization problem in this context. The paper presents the success of EFM depends on how optimally the fuzzy membership parameters are selected and how fuzzy rules are generated.

  • PDF

Speed Estimation and Control of IPMSM Drive using NFC and ANN (NFC와 ANN을 이용한 IPMSM 드라이브의 속도 추정 및 제어)

  • Lee Jung-Chul;Lee Hong-Gyun;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.282-289
    • /
    • 2005
  • This paper proposes a fuzzy neural network controller based on the vector control for interior permanent magnet synchronous motor(IPMSM) drive system. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability This paper does not oかy presents speed control of IPMSM using neuro-fuzzy control(NFC) but also speed estimation using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. Thus, it is presented the theoretical analysis as well as the analysis results to verify the effectiveness of the proposed method in this paper.

A Study on an Adaptive Membership Function for Fuzzy Inference System

  • Bang, Eun-Oh;Chae, Myong-Gi;Lee, Snag-Bae;Tack, Han-Ho;Kim, Il
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.532-538
    • /
    • 1998
  • In this paper, a new adaptive fuzzy inference method using neural network based fuzzy reasoning is proposed to make a fuzzy logic control system more adaptive and more effective. In most cases, the design of a fuzzy inference system rely on the method in which an expert or a skilled human operator would operate in that special domain. However, if he has not expert knowledge for any nonlinear environment, it is difficult to control in order to optimize. Thus, using the proposed adaptive structure for the fuzzy reasoning system can controled more adaptive and more effective in nonlinear environment for changing input membership functions and output membership functions. The proposed fuzzy inference algorithm is called adaptive neuro-fuzzy control(ANFC). ANFC can adapt a proper membership function for nonlinear plant, based upon a minimum number of rules and an initial approximate membership function. Nonlinear function approximation and rotary inverted pendulum control system ar employed to demonstrate the viability of the proposed ANFC.

  • PDF

Flood Forecasting and Warning Using Neuro-Fuzzy Inference Technique (Neuro-Fuzzy 추론기법을 이용한 홍수 예.경보)

  • Yi, Jae-Eung;Choi, Chang-Won
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.341-351
    • /
    • 2008
  • Since the damage from the torrential rain increases recently due to climate change and global warming, the significance of flood forecasting and warning becomes important in medium and small streams as well as large river. Through the preprocess and main processes for estimating runoff, diverse errors occur and are accumulated, so that the outcome contains the errors in the existing flood forecasting and warning method. And estimating the parameters needed for runoff models requires a lot of data and the processes contain various uncertainty. In order to overcome the difficulties of the existing flood forecasting and warning system and the uncertainty problem, ANFIS(Adaptive Neuro-Fuzzy Inference System) technique has been presented in this study. ANFIS, a data driven model using the fuzzy inference theory with neural network, can forecast stream level only by using the precipitation and stream level data in catchment without using a lot of physical data that are necessary in existing physical model. Time series data for precipitation and stream level are used as input, and stream levels for t+1, t+2, and t+3 are forecasted with this model. The applicability and the appropriateness of the model is examined by actual rainfall and stream level data from 2003 to 2005 in the Tancheon catchment area. The results of applying ANFIS to the Tancheon catchment area for the actual data show that the stream level can be simulated without large error.

The Design of Fuzzy Controller by Means of Genetic Optimization and Estimation Algorithms

  • Oh, Sung-Kwun;Rho, Seok-Beom
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.17-26
    • /
    • 2002
  • In this paper, a new design methodology of the fuzzy controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors. The design procedure is based on evolutionary computing (more specifically, a genetic algorithm) and estimation algorithm to adjust and estimate scaling factors respectively. The tuning of the soiling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as HCM (Hard C-Means) and Neuro-Fuzzy model[7]. The validity and effectiveness of the proposed estimation algorithm for the fuzzy controller are demonstrated by the inverted pendulum system.

  • PDF

Development of PV Power Prediction Algorithm using Adaptive Neuro-Fuzzy Model (적응적 뉴로-퍼지 모델을 이용한 태양광 발전량 예측 알고리즘 개발)

  • Lee, Dae-Jong;Lee, Jong-Pil;Lee, Chang-Sung;Lim, Jae-Yoon;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.246-250
    • /
    • 2015
  • Solar energy will be an increasingly important part of power generation because of its ubiquity abundance, and sustainability. To manage effectively solar energy to power system, it is essential part In this paper, we develop the PV power prediction algorithm using adaptive neuro-fuzzy model considering various input factors such as temperature, solar irradiance, sunshine hours, and cloudiness. To evaluate performance of the proposed model according to input factors, we performed various experiments by using real data.

Development of Daily Peak Power Demand Forecasting Algorithm with Hybrid Type composed of AR and Neuro-Fuzzy Model (자기회귀모델과 뉴로-퍼지모델로 구성된 하이브리드형태의 일별 최대 전력 수요예측 알고리즘 개발)

  • Park, Yong-San;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.189-194
    • /
    • 2014
  • Due to the increasing of power consumption, it is difficult to construct accurate prediction model for daily peak power demand. It is very important work to know power demand in next day for manager and control power system. In this research, we develop a daily peak power demand prediction method based on hybrid type composed of AR and Neuro-Fuzzy model. Using data sets between 2006 and 2010 in Korea, the proposed method has been intensively tested. As the prediction results, we confirm that the proposed method makes it possible to effective estimate daily peak power demand than conventional methods.

Neuro-Fuzzy Diagnostic Technique for Performance Evaluation of a Chiller (뉴로 퍼지를 이용한 냉동기 성능 진단 기법)

  • Shin, Young-Gy;Chang, Young-Soo;Kim, Young-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.553-560
    • /
    • 2003
  • On-site diagnosis of chiller performance is an essential step fur energy saving business. The main purpose of the on-site diagnosis is to predict the COP of a target chiller. Many models based on thermodynamics background have been proposed for this purpose. However, they have to be modified from chiller to chiller and require deep insight into thermodynamics that most of field engineers are often lacking in. This study focuses on developing an easy-to-use diagnostic technique that is based on adaptive neuro-fuzzy inference system (ANFIS). Quality of the training data for ANFIS, sampled over June through September, is assessed by checking COP prediction errors. The architecture of the ANFIS, its error bounds, and collection of training data are described in detail.

A neuro-fuzzy approach to predict the shear contribution of end-anchored FRP U-jackets

  • Kar, Swapnasarit;Biswal, K.C.
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.397-409
    • /
    • 2020
  • The current study targets to estimate the contribution of the end-anchored FRP composites in resisting shear force using a soft computing tool i.e., adaptive neuro-fuzzy inference system (ANFIS). A total of 107 sets of data accumulated from literature was utilized for the development and evaluation of the current ANFIS model. A comparative analysis between the ANFIS predictions and the acquired experimental results has shown that the ANFIS predictions are in very good agreement with that of experimental ones. Additionally, the accuracy of the current ANFIS model has been weighed up against the estimates of nine widely adopted design guidelines. Based on various statistical parameters, it has been deduced that the effectiveness of the current ANFIS model is better than the considered design guidelines. Besides this, a parametric study was carried out to explore the combined effect of different parameters as well as the impact of individual parameters.