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The Design of Fuzzy Controller by Means of Genetic Optimization
and Estimation Algorithms

Sung-Kwun Oh and Seok-Beom Rho

Abstract - In this paper, a new design methodology of the fuzzy controller is presented. The performance of the fuzzy con-
troller is sensitive to the variety of scaling factors. The design procedure is based on evolutionary computing (more specifi-
cally, a genetic algorithm) and estimation algorithm to adjust and estimate scaling factors respectively. The tuning of the scal-
ing factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the
fuzzy controller by means of two types of estimation algorithms such as HCM (Hard C-Means) and Neuro-Fuzzy model[7].
The validity and effectiveness of the proposed estimation algorithm for the fuzzy controller are demonstrated by the inverted

pendulum system.

Keywords - fuzzy controller, evolutionary computing, estimation algorithm, Hard C-Means (HCM) Clustering, neuro-fuzzy

model

1. Introduction

The ongoing challenge for advanced system control has
resulted in a diversity of design methodologies and detailed
algorithms. Fuzzy controllers have positioned themselves
in the dominant role at the knowledge-rich spectrum of
control algorithms. The advantages of the fuzzy controllers
manifest by their suitability for nonlinear systems (as they
are nonlinear mappings in the first place) and for high de-
viations from the set point, and by easy capturing the ap-
proximate and qualitative aspects of human knowledge and
reasoning [3][4]. The intent of this study is to develop, op-
timize and experiment with the fuzzy controller (the fuzzy
PD controller or the fuzzy PID controller). One of the dif-
ficulties in controlling complex systems is to derive the
optimal control parameters such as linguistic control rules,
scaling factors, and membership functions of the fuzzy
controller. With this regard, genetic algorithms (GAs) have
already started playing an important role as a mechanism
of global search of the optimal parameters of such control-
lers. However, in controlling a nonlinear plant such as the
inverted pendulum of which initial states change in each
case, the performance of controllers may become poor,
since the control parameters of the fuzzy controller cannot
be easily adapted to the changing initial states such as an-
gular position and angular velocity. To alleviate the above
shortcoming, we use two types of estimation algorithms
such as HCM (Hard C-Means) clustering method and
Neuro-fuzzy model and then estimate the parameters of the
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controller in each case. The paper includes the experimen-
tal study dealing the inverted pendulum. The performance
of systems under control is evaluated from the viewpoint of
ITAE (Integral of the Time multiplied by the Absolute
value of Error) and overshoot [1].

2, The Fuzzy PID Controller

The block diagram of fuzzy PID controller is shown in
Fig. 1. Referring to Fig. 1, we confine to the following no-
tation. e denotes the error between reference and response
(output of the system under control), Ae is the first-order
difference of error signal while A% is the second-order dif-
ference of the error. Note that the input variables to the
fuzzy controller are transformed by the scaling factors (GE,
GD, GH, and GC) whose role is to allow the fuzzy control-
ler to “see” the external world to be controlled.

Ry

-
au Auw " Oupun

Fuzzy
O o ] 2 +—*

- A%
an
aa

Fig. 1 An overall architecture of the fuzzy PID controller

The above fuzzy PID controller consists of rules of the
form [9][10]

R, :if Eis Ajj and AE is A,j and A’E is A;; then AUjis D;

The capital letters standing in the rule (R;) denote fuzzy
variables (linguistic terms) whereas D is a numeric value
(singleton) of the control action. In each control rule, a
level of its activation is computed in a standard fashion (1).
The inferred value of consequence part is converted into
numeric values with the aid of (2-1)[9].
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o, =min{u, (E),u, (AE),pu  (A’E)} (D
. _ 20D, _

e @D

Au(k) =AU"(k)- GC (2-2)

An overall operation of a fuzzy PID controller can be
described by

u(k)=u(k-1)+ Au(k) 3)

In the case the input variables are E and AE, their mem-
bership functions are as follows

NB : Negative Big, NM : Negative Medium, NS : Nega-
tive Small,

ZO : Zero, PS : Positive Small, PM : Positive Medium,
and

PB : Positive Big.

When dealing with the three input variables of the fuzzy
controller, namely E, AE, and A’E, the membership func-
tions are denoted as follows

N : Negative, Z : Zero, and P : Positive.

The membership functions of the output variable of the
controller, that is the changes of control are NB(-m3),
NM(-m2), NS(-m1l), ZO(0), PS(m1), PM(m2) and PB(m3).
The initial parameters of these membership functions are
equal to ml, m2, and m3, respectively. The collection of
the rules is shown in Table 1.

Table 1 Fuzzy control rules
(a) 2 input variables

NB | NM NS y4e} PS PM PB
NB -m3 -m3 -m3 -m3 -m2 -ml 0

NM i -m3 { -m3 | -m3 | -m2 [ -ml 0 ml
NS -m3 -m3 -m2 -ml 0 ml m2
ElzOo| -m3 | -m2 | -ml 0 ml | m2 | m3
PS -m2 | -mi 0 ml m2 m3 m3
PM || -ml 0 ml m2 m3 m3 m3
PB 0 ml m2 m3 m3 m3 m3

(b) 3input variables

A’E=N AE=7Z7 A’E =P

AE AE AE
N|Z|P N|Z]|P N{Z|P
N [-m3|-m3|-m2 N [-m3]-m2|-m2 N f-m2|-ml| 0
E{Z [[-m2]-m1| 0 E|Z|[-m2f 0|ml E[Z]0|ml|m2
PO |jml{m3 P m2{m2|m3 P |m2{m3|m3

We use triangular membership functions defined in the
input and output spaces; see Fig. 2 and 3. Here these
spaces are normalized to the [-1, 1] interval.

(a) In case of E,AE and A’E (b) In case of E and AE
Fig. 2 Membership functions of the premise input variables

A]l' NB NM NS ZE PSS PM  PB
-l\ =213 =173 [ 173 273 1
(a) In case of training (b) In case of evaluation
Fig. 3 Membership functions (singletons) defined in the
consequence variable, AU

3. Auto-tuning of the fuzzy controller by GAs

Genetic algorithms (GAs) are the search algorithms in-
spired by Nature in the sense that we exploit a fundamental
concept of a survival of the fittest as being encountered in
selection mechanisms among species. In GAs, the search
variables are encoded in bit strings called chromosomes.
They deal with a population of chromosomes with each
representing a possible solution for a given problem. A
chromosome has a fitness value that indicates how good a
solution represented by it is. In control applications, the
chromosome represents the controller’s adjustable parame-
ters and fitness value is a quantitative measure of the per-
formance of the controller.

In general, the population size, a number of bits used for
binary coding, crossover rate, and mutation rate are speci-
fied in advance. The genetic search is guided by a repro-
duction, mutation, and crossover. Each of these phases
comes with a set of specific numeric parameters character-
izing the phase. In this study, the number of generations is
set to 100, crossover rate is equal to 0.6, while the mutation
rate is taken as 0.35. The number of bits used in the coding
is equal to 10.

Fig. 4 portrays an overall auto-tuning scheme. Let us re-
call that this involves tuning of the scaling factors and a
construction of the control rules. These are genetically op-
timized. We set the initial individuals of GAs using three
types of parameter estimation modes such as a basic mode,
contraction mode and expansion mode. In the case of a
basic mode (BM), we use scaling parameters that normal-
ize error between reference and output, one level error dif-
ference and two level error difference by [-1, 1] for the
initial individuals in the GA. In a contraction mode (CM),
we use scaling parameters reduced by 25% in relation to
the basic mode. While in the expansion mode (EM), we
use scaling parameters enlarged by 25% from a basic mode.
The standard ITAE expressed for the reference and the
output of the system under control is treated as a fitness
function [2].

. E

controlled + '

Fig. 4 The scheme of auto-tuning of the fuzzy PID control-
ler involving estimation of the scaling factors
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The overall design procedure of the fuzzy PID controller
realized by means of GAs is illustrated in Fig. 4. It consists
of the following steps

[step 1] Select the general structure of the fuzzy control-
ler according to the purpose of control and dynamics of the
process. In particular, we consider architectural options.
(PID, FPD(Fuzzy PD), and FPID(Fuzzy PID) controller)

[step 2] Define the number of fuzzy sets for each vari-
able and set up initial control rules, refer to Fig. 2 and 3.

[step 3] Form a collection of initial individuals of GAs.
This involves the following

1. set the initial individuals of GAs for the scaling factor
of fuzzy controller. The scaling factors can be described as
normalized coefficients. Each scaling factor is expressed
by (4).

Fig. 5 illustrates three types of estimation modes of the
scaling factor being used in setting the initial individuals of
GAs describing the fuzzy controller.

E(kT) = errorx GE “)
AE(KT) =[error(kT) —error((k —1)T)]x GD

NE(KT) = [error(kT) - 2error((k - 1)T) + error((k — 2)T)]x GH
U(kT) = U((k —D)T)+ AUKkT)xGC

| Expansion Mode |

1
Contraction Mode

-1.25 -1 -0.75 o 0.75 1 1.25
L !
= Basic Mode gl

Fig. 5 Three types of estimation modes for the scaling fac-
tors: basic, expansion, and contraction

E, AE,A'E

[step 4] Here, all the control parameters such as the
scaling factors GE, GD, GH and GC are tuned at the same
time.

4. The Estimation Algorithms

4.1 Algorithm 1 : HCM clustering algorithm and
Polynomial

In this algorithm, we use HCM clustering algorithm to
classify the data and identify the divided data on each clus-
ter by means of LMS method. We use a type of such poly-
nomial as (5), and estimate coefficients of the polynomial.

y(i) =C, + C,8() + C,0()* +---+C,0()" &)

Given a set of data X={x,x5,...,X;}, where x; =[xy,
..-;Xkm], 0 18 the number of data and m is the number of
variables[3]. Let P(X) be the power set of X, that is, the set
of all the subsets of X. A hard c-partition of X is the family
{A, eP(X):1<i<c} such that (LA =X and A,nA,=¢ for
1<i=j<c. Each A; is viewed as a cluster, so {A,, ..., A.}
partitions X into c clusters. The hard c-partition can be re-
formulated through the characteristic (membership) func-

tion of the element x in A;. Specifically, define

1, x €A
{ ceA, ©)
0, x, gA,

where x, e X, A, eP(X), 1=1,2,...,n. Clearly, us=1 means
that x, belongs to cluster A;. Given the value of uy, we can
uniquely determine a hard c-partition of X, and vice versa.
The uy’s should satisfy the following three conditions:

u, €{0,1}, 1<i<c, 1<k<n @)

Yu, =1, Vke{l2,...n (®)

0<Yu, <n, Vie{l,2,...,c} 9)
k=1

(7) and (8) together mean that each x e X should belong
to one and only one cluster. (9) requires that each cluster A;
must contain at least one and at most n-1 data point. Col-
lecting u, with 1<i<c and 1<k<n into a cxn matrix
U=[uy]. We obtain the matrix representation for hard c-
partition, defined as follows.

M. ={U|uik {0}, Yu, =1, 0<Su, <n} (10)
i=t k=1

Step 1 : Fix the number of clusters c(2<c<n) and ini-
tialize the partition matrix U e M_
Step 2 : Calculate the center vectors v, of each cluster :

vy ={vis Viz""’vi_i""’vim} (1 1)
n
2u o xy
vy = —— (12
2y
P

where, [uJ=U®,i=1,2, ....c,j=1,2, ....m.

Step 3 : Update the partition matrix U"; these modifica-
tions are based on the standard Euclidean distance function
between the data points and the prototypes

172
d, =d(x, —Vi):"Xx_Vi":I:_Z(ij_Vij)z:| (13)
=1
(el _ 1 d =min{d}{{} for all jec (14)
'k 0 otherwise

Step 4 : Check a termination criterion.
If |UY-UY| <& (tolerance level) (15)

stop ; otherwise setr =1 + 1 and return to step 2.
4.2 Algorithm 2: Neuro-fuzzy model

As visualized in Fig. 6, NFN can be designed by using
space partitioning in terms of individual input variables. Its
topology is concerned with a granulation carried out in
terms of fuzzy sets being defined for each input variable.
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Fig. 6 NFN architecture

In Fig. 6, the “circles” denotes units of the NFN, “N”
describes a normalization procedure applied to the mem-
bership grades of the input variable x;. The output fi(x;) of
the “Y” neuron is governed by some non-linear function f;.
Finally, the output of the FNN J reads as

§=1,00)+ £,00) +ooe k£, 05,) = 26 (x,) (16)

with m being the number of the input variables(viz. the
number of the outputs f’s of the “X” neurons in the net-
work). Here we can regard each f; given by (16) as the fol-
lowing mappings (rules).

R':If x, is A, then y; = w,

R":If x, is A,, then y, =w,, a7

The learning of the NFN is realized by adjusting connec-
tions of the neurons and as such it follows a standard Back-
Propagation (BP) algorithm. In this study, we use the
Euclidean error distances

E,=(y,~3,) (18)
=30, -9, (19)

where E, is an error measure for the p-th data, y, is the p-th
target output data, y stands for the p-th actual output of the
model for this specific data point, N is total input-output
data pairs, and E is a sum of the errors.

As far as learning is concerned, the connections change
as follows

w{new) = w(old) + Aw 20)

where the update formula follows the gradient descent
method

( BEP) GE, %y, ofi(x)
Aw,;=n-| - =-N—
ow, oy, ofi(x)) oOw;

ij ]

=2-m-(y, = ¥,) Hy(x) (2D

with 77 being a positive learning rate.

Quite commonly to accelerate convergence, a momen-
tum term is being added to the learning expression. Com-
bining (21) and a momentum term, the complete update
formula combining the already discussed components is

Awij = 2'“'(}’;’ _S’p)'“’ij(xi)+0'(wij(t)_wij(t_1)) (22)

(Here the momentum coefficient, ¢, is constrained to the
unit interval).

Fig. 7 depicts the detailed flowchart of the complete tun-
ing and estimating process.

Tuning Algorithm

Get the auto-tuned control parameters by means of GAs
for each initial angle(0.01,0.02,...,0.11)

l

Estimating Algorithms

Agorithm 2 :
Neuro-Fuzzy Model

Agorithm 1 :
HCM + Polynomial

To estimate the control Te estimate the control
parameters, classify the acquired parameters, identify the acquired
data by means of HCM and data by means of Neuro~Fuzzy -

identify them using LMS Model

Estimate the control parameters
for the arbitrarily given values
(initial angle)

Fig. 7 Overall tuning and estimating process

5. Simulation Study

The proposed control scheme can be applied to a variety
of control problems. In this section, we demonstrate the
effectiveness of the fuzzy controller by applying it to the
inverted pendulum system (Fig. 8).

The inverted pendulum system is composed of a rigid
pole and a cart on which the pole is hinged [4][5]. The cart
moves on the rail tracks to its right or left, depending on
the force exerted on the cart. The pole is hinged to the car
through a frictionless free joint such that it has only one
degree of freedom. The control goal is to balance the pole
starting from nonzero conditions by supplying appropriate
force to the cart. In this study, the dynamics of the inverted
pendulum system are characterized by two state variables:
6 (angle of the pole with respect to the vertical axis),
6 (angular velocity of the pole). The behavior of these two
state variables is governed by the following second-order
equation.

|—_L_> Ii CA}r
(-]

Fig. 8 The inverted pendulum system

The dynamic equation of the inverted pendulum is
shown as the following.

a— p— 2 1
gsin 0+ cos 9(———1: mi6_sin eJ

m,+m

9=
14 mcos® 0
3 m+m (23)
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Where g (acceleration due to gravity) is 9.8m/s’, m,
(mass of cart) is 1.0kg, m (mass of pole) is 0.14g, and F is
the applied force in newtons.

(24) is the linearized form from (23).

3
0 —

. 8 [mc+m]
G N 7/
j4__m
3 m,+m

From the above (24), we can find the state equation.

I g

Where, x;is 6 x, is 6 and Uis F.

Our control goal here is to balance the pole without re-
"gard to the cart’s position and velocity, and we compare
the fuzzy PID controller and the fuzzy PD controller with
the conventional PID controller under same conditions to
validate the fuzzy PID controller and the fuzzy PD control-
ler.

- Tuning of control parameters and estimation

We get control parameters such as GE, GD, GH, and GC
tuned by GAs because the control parameters have an ef-
fect on the performance of controller. GAs are powerful
nonlinear optimization techniques. However, the powerful
performance is obtained at the cost of expensive computa-
tional requirements and much time. To overcome this weak
point, first, we select several initial angular positions and
obtain the auto-tuned control parameters by means of GAs
according to the change of each selected initial angular
positions, then build a table. Secondly, we use three algo-
rithms to estimate the control parameters, which are ex-
plained next section. We consider the ITAE (Integral of the
Time multiplied by the Absolute value of Error) and Over-
shoot as the PI (Performance Index) of the controller. The
initial angular positions are selected that are 0.01rad.,
0.02rad. ,..., 0.11rad., and 0.115rad. We tune(adjust) the
control parameters of each controller (fuzzy PID controller,
fuzzy PD controller and PID controller)

Table 2. shows the scaling factors of the fuzzy controller
tuned by using GAs, ITAE and OverShoot(%) in case that
the initial angular position of the inverted pendulum is
0.01rad., 0.02rad. ,..., 0.11rad., and 0.115rad. respectively.
Using these 21 data, the auto-tuned values of scaling fac-
tors are obtained by using GAs for estimating control pa-
rameters.

The control parameter and performance index (ITAE,
Overshoot(%)) of the fuzzy PID controller after genetic
optimization in case of 8= 0.01,...,0.115(rad)

Fig. 9 shows (a) the performance of a fitness function in
case of 8= 0.06(rad) and (b) the tuning procedure of scal-
ing factors such as GE, GD, GC and GH according to suc-
cessive generation with the aid of GAs. Refer to Table 2.

24

(25)

21

Table 2 The control parameter and performance index
(ITAE, Overshoot(%)) of the fuzzy PID control-
ler after genetic optimization in case of 8 =
0.01,...,0.115(rad)

Initial
Angle
(rad)

Scalin,

Factors

GE

GD

GH

GC

ITAE

Over
Shoot(%)

0.01

3.838221

1.845552

0.063460

0.784946

0.000773

0.069411

0.02

3.900293

1.124145

0.049384

0.718475

0.004156

0.0

0.025

3.812805

0.987292

0.040938

0.878299

0.005924

0.0

0.03

3.866080

1.004888

0.045630

0.702346

0.011615

0.0

0.035

3.644184

0.901271

0.040938

0.951630

0.011605

0.172315

0.04

3.623656

0.903226

0.04

0.992180

0.016847

0.007811

0.045

3.767351

0.916911

0.041877

0.850440

0.020891

0.006007

0.05

3.985826

0.948192

0.044692

0.780547

0.024612

0.147663

0.055

3.5210170

0.887586

0.04692

0.708211

0.031033

0.131664

0.06

3.707722

0.930596

0.043754

0.873412

0.037682

0.068068

0.065

3573314

0.981866

4.46920

0.686217

0.045051

0.0

0.07

3.585044

0.899316

0.042815

0.754643

0.047059

0.0

0.075

3.830889

0.916911

0.041877

0.857771

0.047319

0.017514

0.08

3.588465

0.918866

0.044692

0.629032

0.060604

0.0

[0.085

3.884653

0.891496

0.09

3.937928

0.883657

| 0.04

0.675953

0.051839

0.0

0.04

0.776149

0.051433

0.0

0.095

3.960411

0.983382

0.044692

0.981916

0.071910

0.082461

0.1

3.849642

0.942326

0.041877

0.989247

0.074951

0.023834

0.105

3.785435

0.932551

0.046920

0.799120

0.079358

0.103983

0.11

3.985337

0.983382

0.04

0.921799

0.094146

0.0

0.115

3.875367

0.909091

0.040938

0.647116

0.081462

0.0

ot
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Fig. 9 (a) A fitness function (b) tuning procedure of scaling
factors in successive generations(&= 0.06rad )
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Fig. 10 shows auto-tuned scaling factors according to the
change of initial angles of the inverted pendulum.

Table 3 summarizes the scaling factors of the fuzzy PD
controller that are tuned by using GAs under the same ini-
tial condition as those of the fuzzy PID controller, ITAE
and OverShoot (%).

Table 3 The control parameter and performance index
(ITAE, Overshoot(%)) of the fuzzy PD controller

after genetic optimization in case of & =

0.01,...,0.115(rad)

Initial Scaling Factors Over
Angle } 5 GD GC ITAE | Shoot(%)
(radian)
0.01 [8.712610{1.137439| 1.004888 0.000399 | 0.058256
| 0.02 [8.250244]0.698925( 1.414956 0.001367 | 0.047433
0.025 {(8.328445(0.643206( 1.497067 0.002415 || 0.017458
0.03 ]18.361681]0.621701| 1.494135 0.003908 | 0.088196
0.035 [[8.308895]|0.610948 | 1.497067 0.005679 | 0.086351
0.04 ]19.061584/0.630499| 1.488270 0.007141 0.082944
0.045 [9.687194]0.674487 ] 1.392962 0.009562 || 0.051975
0.05 [8.49462410.630499| 1.456012 0.012641 0.020423
0.055 19.198436]0.654936] 1.394428 0.013748 | 0.082748
0.06 [9.755621[0.659824| 1.431085 0.014174 || 0.090579
0.065 [19.120234]0.659824| 1.391496 0.018474 | 0.032252
0.07 [8.993157[0.630499| 1.472141 0.018803 | 0.059627
0.075 119.462365[0.669599| 1.441349 0.022051 0.000610
0.08 ]19.384164(0.640274] 1.489736 0.021564 || 0.036157
0.085 [9.86314810.684262| 1.379765 0.024754 | 0.032981
0.09 [9.931574]0.679374] 1.39589%4 0.025784 | 0.044760
0.095 [19.921799]0.659824| 1.450147 0.025784 | 0.076515
0.1 [19.44281510.659824| 1.482405 0.031177 0.000149
0.105 ]9.892473]0.6940.97} 1.457478 0.034580 0.0
0.11 [9.892473[0.708700( 1.309384 0.037549 0.22831
0.115 [9.892473]0.645161| 1.486804 0.032466 || 0.118137

Table 4 shows the control parameters of the PID control-
ler that are tuned by using GAs under the same initial con-
dition as those of the fuzzy PID controller, ITAE and
Overshoot (%).

Table 4 The control parameter and performance index
ITAE, Overshoot(%)) of the PID controller after
genetic optimization in case of & = 0.01,...,

0.115(rad)
Initial Control Parameters ITAE Over
Angle(rad), K Ti Td Shoot(%)
0.01 64.692085]62.883675{ 0.400616 | 0.001093 | 0.048586
0.02 59.670185]62.563278 ] 0.244526 | 0.008048 | 0.103347
0.025 |78.739006]75.542526] 0.174428 | 0.012917 | 0.132199
0.03 69.522324|59.279228] 0.156579 || 0.028170 | 5.087282
0.035 [75.934036(56.5425221 0.156579 || 0.031596 | 0.602903
7 0.04 168.740410]65.847321] 0.156579 | 0.041281 || 1.242897
0.045 |68.896797|77.888832] 0.127263 || 0.060246 || 8.373180
0.05 72.884567[57.168053] 0.127263 | 0.065878 || 5.888550
0.055 |[70.773392[50.912727] 0.127263 || 0.080656 || 5.893166
0.06 [174.682976(75.777657{ 0.127263 | 0.079899 | 4.355784
0.065 [66.238281]70.773392] 0.127263 | 0.105081 | 6.278503
[ 0.07 [73.901054[77.732445] 0.127263 | 0.101790 | 4.075428
0.075 |[75.934036(67.880302( 0.127263 || 0.113617 ¢ 3.552615
0.08 [168.896797157.715397] 0.127263 | 0.141023 | 4.962779
0.085 |}75.543076]79.843620] 0.127263 | 0.132412 | 3.431820
0.09 1/79.687233]75.7776571 0.127263 || 0.139150 ]| 2.691088
0.095 |[68.114883[39.262180] 0.127263 | 0.201815 | 4.986214
0.1 75.152122]71.477112] 0.127263 | 0.170988 | 3.382015
0.105 1[70.304245[41.920692| 0.127263 | 0.221192 || 4.401833
0.11 74.682976[66.551048] 0.127263 || 0.198607 [ 3.425961
0.115 [[79.374466]60.530293] 0.127263 | 0.205189 || 2.672773

Fig. 11(a) and (b) show the dynamics of output of the
system controlled by each controller after genetic optimiza-
tion in case that the initial angle is 0.07(rad) and 0.11(rad)
respectively.

angulsr position(rad)

et

5z 64 08 0B Tz 14 e 65z o4 0§ ok
time(sec) timef

a) 8=0.07(rad) (b) §=0.11(rad)
Fig. 11 The dynamics of output of the system controlled by

each optimized controller in case of(a) 6 =

0.07(rad) and (b) 6= 0.11(rad) respectively.

In this Fig., we know that the fuzzy PID controller and
fuzzy PD controller are superior to the conventional PID
controller from the viewpoint of ITAE and Overshoot per-
centage.

Now, we consider the case in which the initial angular
positions of the inverted pendulum are not included in Ta-
ble 2,3 and 4 (in other words, selected arbitrarily within the
given range). Here we show that the control parameters
under the arbitrarily selected initial angular position are not
tuned by the GAs and the control parameters of each con-
troller are estimated by using the following two types of
estimation algorithms.

Algorithms 1 — HCM and Polynomial (Least Means
Square)

We cluster the acquired control parameters by using
HCM method. Each cluster is identified by LMS (Least
Mean Square) method. The type of polynomial used in
LMS method is as the following.

Pegimae = COj + Cljeini(iz] + Cz,'eﬁmm + C3jei3ni|ial (26)

where, Pegimae is the estimated controller parameter, Cy,
Cyj, Cyj, and Cy; are the coefficients of polynomial, which
belong to jy cluster, and Gy, i the angular position vari-
able of the inverted pendulum. Whatever initial angular
position is given, we are able to estimate the control pa-
rameters by using HCM and the above polynomial.

To estimate the control parameters, the control parame-
ters obtained from Table 2,3 and 4 are classified by HCM
method and identified by LMS method. The structure of
center vector is shown as the following.

V = (6, Control Parameter) 27N

The number of the scaling factors for the fuzzy PID con-
troller, which belong to each cluster, is shown Table 5.

After classified by HCM method, the scaling factors of
the fuzzy PD controller are divided into three clusters. The
number of the scaling factors, which belong to each cluster,
is shown Table 6.
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Table 5 The number of parameters of each cluster for the
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Table 10 The estimated parameters, ITAE and overshoot

fuzzy PID controller (%) of the PID controller in the case of
b GD G GO 6=0.034(rad) and 0.102(rad) respectively
Cluster 1 7 1 9 7 c Initial K T d [TAE Over
Cluster 2 10 15 S 7 ase Anglo(rad) i Shoot(%)
Cluster 3 4 5 7 7
1 0.034_[175.990829 | 72.399765 | 0.153718 || 0.027240 | 1.224719
2 | o102 [77.300262 | 71.467155 | 0.128666 [ 0.172103 | 2.716259

Table 6 The number of parameters of each cluster for the

fuzzy PD controller
GE GD GC
Cluster 1 6 11 8
Cluster 2 8 9 12
Cluster 3 7 1 1

After classified, the control parameters of PID controller
are divided into two clusters. The number of the scaling
factors, which belong to each cluster, is shown Table 7.

Table 7 The number of parameters of each cluster for the
PID controller

K Ti Td
Cluster 1 11 15 13
Cluster 2 6 3 6

In case that the initial angular position is 0.034(rad) or
0.102(rad) not shown in Table 2, we should estimate the
scaling factor for we can not acquire the tuned scaling fac-
tors from Table 2,3 and 4. We estimate the control parame-
ters of each controller by means of HCM method and LMS
method.

Table 8 shows the estimated scaling factors of the fuzzy
PID controlter and describes performance index(ITAE,
Overshoot(%)) of the fuzzy PID controller with the esti-
mated scaling factors in case that the initial angle of in-
verted pendulum is 0.034(rad) and 0.102(rad) respectively.

Table 8 The estimated parameters and performance in-
dex(ITAE, Overshoot(%)) of the fuzzy PID con-
troller in the case of £=0.034(rad) and 0.102(rad)

respectively
[nitial Angle Over
Case (rad) GE GD GH GC ITAE Shoot(%)
1 0.034  113.841056]10.9133920.040402(0.941209(10.010015/0.143057
2 0.102 3.841056110.9133921/0.04244010.80051710.069981 §0.011672

In case of the fuzzy PD controller, the estimated scaling
factors and performance index are shown in Table 9 when
the initial angular position is 0.034(rad) and 0.102(rad)
respectively.

Table 9 The estimated parameters, ITAE and Overshoot
(%) of the fuzzy PD controller in the case of
6-0.034(rad) and 0.102(rad) respectively

Initial Angle| Over
Case (rad) GE GD GC ITAE Shoot(%)
1 0.034 8.409417 | 0.646850 || 1.388746 || 0.027212 || 0.027212
2 0.102 9.854593 1 0.671228 {i 1.476051 | 0.030337 | 0.000357

In case of the PID controller[8], the estimated scaling
factors are shown in Table 10 when the initial angular posi-
tion is 0.034(rad) and 0.102(rad) respectively.

Fig. 12 demonstrates (a)pole angle (b)pole angular ve-
locity (c)state space for initial angle 8 = 0.034(rad) for
each controller (Case 1).

03

time(sec)

{b)pole angular velocity

7}
Umaiasc)

a) pole angle

(c)étate space
Fig. 12 (a)pole angle (b)pole angular velocity (c)state
space for initial angle &= 0.034(rad) (Case 1)

Fig. 13 demonstrates (a)pole angle (b)pole angular ve-
locity (c)state space for initial angle 8= 0.102(rad) (Case 2).

%4 2 snghusr positionfrady

(b)pole angiilar velocity

or
X1 : angutar poaition(rad)

(c)state space
Fig. 13 (a) pole angle (b)pole angular velocity (c)state
space for initial angle 8= 0.102(rad) (Case 3)

Algorithms 2 : Neuro-fuzzy model

We implement Neuro-Fuzzy model for parameter esti-
mation. Table 11 shows the estimated scaling factors of
fuzzy PID controller and describes performance index
(ITAE, Overshoot(%)) of the fuzzy PID controller with the
estimated scaling factors in case that the initial angle of
inverted pendulum is 0.034(rad) and 0.102(rad) respec-
tively.
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Table 11 The estimated parameters by means of neuro-
fuzzy model and performance index(ITAE,
Overshoot(%)) of the fuzzy PID controller in
the case of £=0.034(rad) and 0.102(rad) respec-

tively
Initial Over
Case |Angle(rad) GE GD GH GC ITAE Shoot(%)
1 0.034 ]3.7383440.943769(]0.043576[10.822975(10.012271 | 0.15698
2 0.102  ([3.843736(0.952163((0.04301210.944191 (10.079213{0.027158

In case of the fuzzy PD controller, the estimated scaling
factors and performance index are shown in Table 12 when
the initial angular position is 0.034(rad), 0.067(rad), and
0.102(rad) respectively.

Table 12 The estimated parameters, ITAE and Overshoot
(%) of the fuzzy PD controller in the case of
6=0.034(rad) and 0.102(rad) respectively

Initial Over
Case Angle(rad) GE GD GC ITAE Shoot(%)
1 0.034 8.504756 | 0.617285 | 1.498769 (| 0.005214 | 0.087426
2 0.102 9.751844 || 0.688485 | 1.431968 | 0.033265 0.0

In case of the PID controller, the estimated scaling fac-
tors by means of neuro-fuzzy model are shown in Table 13
when the initial angular position is 0.034(rad) and
0.102(rad) respectively.

Table 13 The estimated parameters, ITAE and overshoot
(%) of the PID controller in the case of
68=0.034(rad) and 0.102(rad) respectively

Initial . Over
Case Angle(rad) K Ti Td ITAE Shoot(%)
1 0.034 74.179962 | 62.227455 || 0.148222 || 0.030588 3.174667
2 0.102 | 71.612167{54.232288 | 0.127264 | 0.195189 | 4.086237

Fig. 14 demonstrates (a)pole angle (b)pole angular

velocity (c)state space for initial angle &= 0.034(rad) (Case 1).

6.

alocity{rad/ses)

X2 : angluar v

(b)pole angular velocity

oo oz 0.
X1 : angutar position(rad)

(c)state space
Fig. 14 (a)pole angle (b)pole angular velocity (c)state
space for initial angle = 0.034(rad) (Case 1)

Fig. 15 demonstrates (a)pole angle (b)pole angular ve-
locity (c)state space for initial angle 8= 0.102(rad) (Case
2).

%7 4 06 os 1

(b)pole angul'g;"eelocity

T3 04 05 02 1€ 1 2

time(sec)

(a) pole angle |

X2 angtuar velocity{cadisech

I BT T T R T E P
X1 : angutar pasltion(rai)

(c)state space
Fig. 15 (a)pole angle (b)pole angular velocity (c)state
space for initial angle &= 0.102(rad) (Case 2).

From the above Fig.s (Fig.s 12~15), we know that the
fuzzy PD and the fuzzy PID controller is superior to the
PID controller from the viewpoint of performance index.

The PID controller is suitable to linear plant and the
fuzzy PD and the fuzzy PID controller have the nonlinear
characteristic. So the fuzzy controllers are superior. Fig. 16
depicts the nonlinear characteristic of the fuzzy PD
controller in case that GE, GD, and GC is equal to 1.

oot B

Fig. 16 The input-output relation of the fuzzy PD control-
ler (GE, GD, GC=1)

Fig. 17 visualizes the input-output relation of the fuzzy
PD controller in case of using case 2 of algorithm 1. Note
that the fuzzy PD comes with a significant nonlinear map-
ping between the inputs and output.

e dot A e
Fig. 17 The input-output relation of fuzzy PD controller
(Case 2 of Algorithm 1)
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Fig. 18 shows that the input-output relation of the fuzzy
PID controller when GE, GD, GH, and GC is equal to 1.

«.two_dol 1

Fig. 18 The surface of the fuzzy PID controller (GE, GD,
GH, GC =1)

Fig. 19 visualizes the input-output relation of each of the
fuzzy PID controller in case of using case 2 of algorithm 1.
Note that the fuzzy PID comes with a significant nonlinear
mapping between the inputs and output.

@ two dot M e dot

Fig. 19 The surface of the fuzzy PID controller (Case 2 of
Algorithm 1)

6. Conclusions

In this paper, we propose the Fuzzy controller design
based on the methodology of tuning of control parameters
using GAs and estimating of control parameters using two
types of estimation algorithms. First, to set the initial indi-
vidual of GAs applied to controllers, we utilize the scaling
factor estimation modes such as BM, CM and EM. Scaling
factor estimation modes such as BM, CM and EM which
ar¢ determined by means of relation between reference,
process error and gain respectively is used to set the initial
individual of GAs for fuzzy controller. Second, we esti-
mate the control parameters such as GE, GD, GH, and GC

by using two types of estimation algorithms so that we may
improve the control performance of the fuzzy controller in
case that the initial states of the inverted pendulum change.

From the simulation studies, using genetic optimization
by scaling factor estimation modes and two types of esti-
mation algorithms, we show that the fuzzy controllers
(fuzzy PID controller and fuzzy PD controller) control ef-
fectively the inverted pendulum system.

Based on this study, for the performance improvement
of output of the inverted pendulum we can consider the
advanced estimation algorithms mentioned in the following.

Adopt FCM method to estimate the control parameters.

Consider angular velocity as well as angular position as
initial values and adopt three algorithms described in this
study to estimate the control parameters.

Use MIMO (Multi Input Multi Output) Neuro-Fuzzy
Model to estimate the control parameters
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