• Title/Summary/Keyword: near-optimal

Search Result 966, Processing Time 0.023 seconds

A new control approach for seismic control of buildings equipped with active mass damper: Optimal fractional-order brain emotional learning-based intelligent controller

  • Abbas-Ali Zamani;Sadegh Etedali
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.305-315
    • /
    • 2023
  • The idea of the combination of the fractional-order operators with the brain emotional learning-based intelligent controller (BELBIC) is developed for implementation in seismic-excited structures equipped with active mass damper (AMD). For this purpose, a new design framework of the mentioned combination namely fractional-order BEBIC (FOBELBIC) is proposed based on a modified-teaching-learning-based optimization (MTLBO) algorithm. The seismic performance of the proposed controller is then evaluated for a 15-story building equipped with AMD subjected to two far-field and two near-field earthquakes. An optimal BELBIC based on the MTLBO algorithm is also introduced for comparison purposes. In comparison with the structure equipped with a passive tuned mass damper (TMD), an average reduction of 44.7% and 42.8% are obtained in terms of the maximum absolute and RMS top floor displacement for FOBELBIC, while these reductions are obtained as 30.4% and 30.1% for the optimal BELBIC, respectively. Similarly, the optimal FOBELBIC results in an average reduction of 42.6% and 39.4% in terms of the maximum absolute and RMS top floor acceleration, while these reductions are given as 37.9% and 30.5%, for the optimal BELBIC, respectively. Consequently, the superiority of the FOBELBIC over the BELBIC is concluded in the reduction of maximum and RMS seismic responses.

Selection on Optimal Bands to EstimateYield of the Chinese Cabbage Using Drone-based Hyperspectral Image (드론 기반 초분광 영상을 이용한 배추 단수 추정의 최적밴드 선정)

  • Na, Sang-il;Park, Chan-won;So, Kyu-ho;Ahn, Ho-yong;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.375-387
    • /
    • 2019
  • The use of drone-based hyperspectral image offers considerable advantages in high resolution remote sensing applications. The primary objective of this study was to select the optimal bands based on hyperspectral image for the estimation yield of the chinese cabbage. The hyperspectral narrow bands were acquired over 403.36 to 995.19 nm using a 3.97 nm wide, 150 bands, drone-based hyperspectral imaging sensor. Fresh weight data were obtained from 2,031 sample for each field survey. Normalized difference vegetation indices were computed using red, red-edge and near-infrared bands and their relationship with quantitative each fresh weights were established and compared. As a result, predominant proportion of fresh weights are best estimated using data from three narrow bands, in order of importance, centered around 697.29 nm (red band), 717.15 nm (red-edge band) and 808.51 nm (near-infrared band). The study determined three spectral bands that provide optimal chinese cabbage productivity in the visible and near-infrared portion of the spectrum.

Prediction of Near-Field Dilution Changes Due to Treatment Capacity Expansion of Masan-Changwon Municipal Wastewater Treatment Plant (마산.창원 하수종말처리장 증설에 따른 근역희석률변화 예측)

  • 유승협
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.2
    • /
    • pp.53-69
    • /
    • 2000
  • For the case of the capacity increase of Masan-Changwon wastewater treatment plant, the changes of near-field dilution rates due to the increased discharges into Masan Bay from the submerged multipart-diffuser were predicted by using CORMIX model. As the increase of wastewater discharges from currently 280,000 m3f day to 720,000 m3fday by 2011, the dilution rates become much lower than the present rates. To enhance the reduced dilution rates, the engineering design changes of diffuser length and alignment were considered as an optimal engineering option. According to the results of the model simulations for these changes, the dilution rates were increased in the strong ambient current of spring tide, but they were not affected by these changes in the weak current of neap tide in Masan Bay. From the analysis of oceanographic survey data, new outfalls sites have been searched. A promising outfalls site is selected and proposed on the basis of maximum obtainable dilution rates predicted by the model simulations.

  • PDF

Optimal Positioning Algorithm for Distributed Energy Resources near Ocean Side (해양도시내 분산전원의 최적 설치점 선정)

  • Park, Jeong-Do;Lee, Seong-Hwan;Doe, Geun-Young;Seong, Hyo-Seong;Jang, Nak-Won
    • Journal of Navigation and Port Research
    • /
    • v.33 no.6
    • /
    • pp.457-462
    • /
    • 2009
  • In this paper we suggest optimal positioning algorithm for DER(distributed energy resource)s near ocean side by using Newton-Rhapson load flow calculation. By installing DERs within urban area, electric power can be effectively transmitted to each loads without constructing additional large scale power stations and transmission lines. Therefore, DERs have attracted worldwide attention as urban area energy sources. However, there are quite a few studies for estimation of power loss due to DERs' location change within urban area Hence, in this study, an optimal positioning scheme for DERs is proposed in order to minimizing electrical power loss.

Energy Efficient Wireless Sensor Networks Using Linear-Programming Optimization of the Communication Schedule

  • Tabus, Vlad;Moltchanov, Dmitri;Koucheryavy, Yevgeni;Tabus, Ioan;Astola, Jaakko
    • Journal of Communications and Networks
    • /
    • v.17 no.2
    • /
    • pp.184-197
    • /
    • 2015
  • This paper builds on a recent method, chain routing with even energy consumption (CREEC), for designing a wireless sensor network with chain topology and for scheduling the communication to ensure even average energy consumption in the network. In here a new suboptimal design is proposed and compared with the CREEC design. The chain topology in CREEC is reconfigured after each group of n converge-casts with the goal of making the energy consumption along the new paths between the nodes in the chain as even as possible. The new method described in this paper designs a single near-optimal Hamiltonian circuit, used to obtain multiple chains having only the terminal nodes different at different converge-casts. The advantage of the new scheme is that for the whole life of the network most of the communication takes place between same pairs of nodes, therefore keeping topology reconfigurations at a minimum. The optimal scheduling of the communication between the network and base station in order to maximize network lifetime, given the chosen minimum length circuit, becomes a simple linear programming problem which needs to be solved only once, at the initialization stage. The maximum lifetime obtained when using any combination of chains is shown to be upper bounded by the solution of a suitable linear programming problem. The upper bounds show that the proposed method provides near-optimal solutions for several wireless sensor network parameter sets.

On the Near Optimal PRT Set of TR Scheme for PAPR Reduction in OFDM System (OFDM 시스템의 PAPR 감소를 위한 TR 방법의 준 최적 PRT 집합 선택에 관한 연구)

  • Lim, Dae-Woon;Noh, Hyung-Suk;No, Jong-Seon;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2C
    • /
    • pp.174-180
    • /
    • 2007
  • In the tone reservation (TR) scheme, it is known that the set of randomly selected peak reduction tones (PRT's) performs better than the contiguous PRT set and the interleaved PRT set in the PAPR reduction of orthogonal frequency division multiplexing (OFDM). It is also known that finding the optimal PRT set corresponds to the secondary peak minimization problem in the TR scheme. However, the problem cannot be solved for the practical number of tones since it is NP-hard. In this paper, a new search algorithm for the near optimal PRT set is proposed based on the fact that the secondary peak value of the PRT set statistically tends to decrease asthe variance of the PRT set decreases.

Blind Decision Feedback Equalizer with a Modified Trellis Decoder for ATSC DTV Receivers (ATSC DTV 수신기를 위해 변형된 트렐리스 복호기를 사용하는 블라인드 판정 궤환 등화기)

  • 박성익;김형남;김승원;이수인
    • Journal of Broadcast Engineering
    • /
    • v.8 no.4
    • /
    • pp.481-491
    • /
    • 2003
  • We present a near-optimal blind decision feedback equalizer (DFE) for Advanced Television Systems Committee digital television (DTV) receivers. By adopting a modified trellis decoder (MTD) with trace back depth of 1 for the decision device In the DFE, we obtain a hardware-efficient near-optimal blind DFE approaching to the optimal DFE which has no error propagation. The MTD uses absolute distance instead of Euclidean distance for computation of a path metric, resulting. In reduced computational complexity. Comparing to the conventional slicer, the MTD shows outstanding performance improvement of decision error probability and is comparable to the original trellis decoder using Euclidean distance. Reducing error propagation in the DFE leads to the improvement of convergence performance in terms of convergence speed and residual error. Simulation results show that the proposed blind DFE performs much better than the blind DFE with the slicer.

OPTIMAL DESIGN FOR CAPACITY EXPANSION OF EXISTING WATER SUPPLY SYSTEM

  • Ahn, Tae-Jin;Lyu, Heui-Jeong;Park, Jun-Eung;Yoon, Yong-Nam
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.63-74
    • /
    • 2000
  • This paper presents a two- phase search scheme for optimal pipe expansion of expansion of existing water distribution systems. In pipe network problems, link flows affect the total cost of the system because the link flows are not uniquely determined for various pipe diameters. The two-phase search scheme based on stochastic optimization scheme is suggested to determine the optimal link flows which make the optimal design of existing pipe network. A sample pipe network is employed to test the proposed method. Once the best tree network is obtained, the link flows are perturbed to find a near global optimum over the whole feasible region. It should be noted that in the perturbation stage the loop flows obtained form the sample existing network are employed as the initial loop flows of the proposed method. It has been also found that the relationship of cost-hydraulic gradient for pipe expansion of existing network affects the total cost of the sample network. The results show that the proposed method can yield a lower cost design than the conventional design method and that the proposed method can be efficiently used to design the pipe expansion of existing water distribution systems.

  • PDF

Using GA based Input Selection Method for Artificial Neural Network Modeling Application to Bankruptcy Prediction (유전자 알고리즘을 활용한 인공신경망 모형 최적입력변수의 선정 : 부도예측 모형을 중심으로)

  • 홍승현;신경식
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.365-373
    • /
    • 1999
  • Recently, numerous studies have demonstrated that artificial intelligence such as neural networks can be an alternative methodology for classification problems to which traditional statistical methods have long been applied. In building neural network model, the selection of independent and dependent variables should be approached with great care and should be treated as a model construction process. Irrespective of the efficiency of a learning procedure in terms of convergence, generalization and stability, the ultimate performance of the estimator will depend on the relevance of the selected input variables and the quality of the data used. Approaches developed in statistical methods such as correlation analysis and stepwise selection method are often very useful. These methods, however, may not be the optimal ones for the development of neural network models. In this paper, we propose a genetic algorithms approach to find an optimal or near optimal input variables for neural network modeling. The proposed approach is demonstrated by applications to bankruptcy prediction modeling. Our experimental results show that this approach increases overall classification accuracy rate significantly.

  • PDF

Optimal Power Flow with Discontinous Fuel Cost Functions Using Decomposed GA Coordinated with Shunt FACTS

  • Mahdad, Belkacem;Srairi, K.;Bouktir, T.;Benbouzid, M.EL.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.457-466
    • /
    • 2009
  • This paper presents efficient parallel genetic algorithm (EPGA) based decomposed network for optimal power flow with various kinds of objective functions such as those including prohibited zones, multiple fuels, and multiple areas. Two coordinated sub problems are proposed: the first sub problem is an active power dispatch (APD) based parallel GA; a global database generated containing the best partitioned network: the second subproblem is an optimal setting of control variables such as generators voltages, tap position of tap changing transformers, and the dynamic reactive power of SVC Controllers installed at a critical buses. The proposed approach tested on IEEE 6-bus, IEEE 30-bus and to 15 generating units and compared with global optimization methods (GA, DE, FGA, PSO, MDE, ICA-PSO). The results show that the proposed approach can converge to the near solution and obtain a competitive solution with a reasonable time.