DOI QR코드

DOI QR Code

A new control approach for seismic control of buildings equipped with active mass damper: Optimal fractional-order brain emotional learning-based intelligent controller

  • Abbas-Ali Zamani (Department of Electrical Engineering, Technical and Vocational University (TVU)) ;
  • Sadegh Etedali (Department of Civil Engineering, Birjand University of Technology)
  • Received : 2022.05.01
  • Accepted : 2023.07.07
  • Published : 2023.08.25

Abstract

The idea of the combination of the fractional-order operators with the brain emotional learning-based intelligent controller (BELBIC) is developed for implementation in seismic-excited structures equipped with active mass damper (AMD). For this purpose, a new design framework of the mentioned combination namely fractional-order BEBIC (FOBELBIC) is proposed based on a modified-teaching-learning-based optimization (MTLBO) algorithm. The seismic performance of the proposed controller is then evaluated for a 15-story building equipped with AMD subjected to two far-field and two near-field earthquakes. An optimal BELBIC based on the MTLBO algorithm is also introduced for comparison purposes. In comparison with the structure equipped with a passive tuned mass damper (TMD), an average reduction of 44.7% and 42.8% are obtained in terms of the maximum absolute and RMS top floor displacement for FOBELBIC, while these reductions are obtained as 30.4% and 30.1% for the optimal BELBIC, respectively. Similarly, the optimal FOBELBIC results in an average reduction of 42.6% and 39.4% in terms of the maximum absolute and RMS top floor acceleration, while these reductions are given as 37.9% and 30.5%, for the optimal BELBIC, respectively. Consequently, the superiority of the FOBELBIC over the BELBIC is concluded in the reduction of maximum and RMS seismic responses.

Keywords

References

  1. Aguila-Camacho, N. and Duarte-Mermoud, M.A. (2013), "Fractional adaptive control for an automatic voltage regulator", ISA Trans., 52(6), 807-815. https://doi.org/10.1016/j.isatra.2013.06.005.
  2. Braz Cesar, M., Coelho, J.P. and Goncalves, J. (2019), "Semi-active vibration control of a non-collocated civil structure using evolutionary-based BELBIC", Actuat., 8(2), 43. https://doi.org/10.3390/act8020043.
  3. Braz Cesar, M., Paulo Coelho, J. and Goncalves, J. (2018), "Evolutionary-based BEL controller applied to a magneto-rheological structural system", Actuat., 7(2), 29. https://doi.org/10.3390/act7020029.
  4. Caponetto, R. (2010), Fractional Order Systems: Modeling and Control Applications, World Scientific, Singapore.
  5. Chen, Z.Y., Peng, S.H., Wang, R.Y., Meng, Y., Fu, Q. and Chen, T. (2022), "Stochastic intelligent GA controller design for active TMD shear building", Struct. Eng. Mech., 81(1), 51-57. https://doi.org/10.12989/sem.2022.81.1.051.
  6. Clough, R.W. and Penzien, J. (1993), Dynamics of Structures, McGraw-Hill, New York, USA.
  7. Darvish Falehi, A. (2019), "Optimal fractional order BELBIC to ameliorate small signal stability of interconnected hybrid power system", Environ. Progr. Sustain. Energy, 38(5), 13208. https://doi.org/10.1002/ep.13208.
  8. Darvish Falehi, A. (2020), "Robust and intelligent type-2 fuzzy fractional-order controller-based automatic generation control to enhance the damping performance of multi-machine power systems", IETE J. Res., 68(4), 2548-2559. https://doi.org/10.1080/03772063.2020.1719908.
  9. Daryabeigi, E., Mirzaei, A., Zarchi, H.A. and Vaez-Zadeh, S. (2018), "Enhanced emotional and speed deviation control of synchronous reluctance motor drives", IEEE Trans. Energy Convers., 34(2), 604-612. https://doi.org/10.1109/TEC.2018.2874486.
  10. Daryabeigi, E., Zarchi, H.A., Markadeh, G.A., Soltani, J. and Blaabjerg, F. (2014), "Online MTPA control approach for synchronous reluctance motor drives based on emotional controller" IEEE Trans. Power Electron., 30(4), 2157-2166. https://doi.org/10.1109/TPEL.2014.2323180.
  11. Das, S. and Pan, I. (2011), Fractional Order Signal Processing: Introductory Concepts and Applications, Springer, Berlin, Heidelberg, Germany.
  12. Debnath, B. and Mija, S.J. (2020), "Emotional learning based controller for quadruple tank system-An improved stimuli design for multiple set-point tracking", IEEE Trans. Indus. Electron., 68(11), 11296-11308. https://doi.org/10.1109/TIE.2020.3038083.
  13. Debnath, B. and Mija, S.J. (2021), "Design of a multivariable stimulus for Emotional-Learning based control of a 2-DOF laboratory helicopter", ISA Trans., 118, 189-206. https://doi.org/10.1016/j.isatra.2021.02.022.
  14. Etedali, S., Zamani, A.A. and Tavakoli, S. (2018), "A GBMO-based PIλDμ controller for vibration mitigation of seismic-excited structures", Autom. Construct., 87, 1-12. https://doi.org/10.1016/j.autcon.2017.12.005.
  15. Fakhrmoosavy, S.H., Setayeshi, S. and Sharifi, A. (2018), "A modified brain emotional learning model for earthquake magnitude and fear prediction", Eng. Comput., 34(2), 261-276. https://doi.org/10.1007/s00366-017-0538-6.
  16. Gunapriya, B., Singaravelan, A., Karthik, M., Ganesh, C. and Shanmugasundaram, R. (2021), "BELBIC study for PMBLDC motor drive system in industrial applications", Advances in Automation, Signal Processing, Instrumentation, and Control, Springer, Singapore.
  17. Heo, G. and Kim, C. (2017), "A hybrid seismic response control to improve performance of a two-span bridge", Struct. Eng. Mech., 61(5), 675-684. https://doi.org/10.12989/sem.2017.61.5.675.
  18. Hosseinaei, S., Ghasemi, M.R. and Etedali, S. (2021), "Optimal design of passive and active control systems in seismic-excited structures using a new modified TLBO", Periodica Polytechnica Civil Eng., 65(1), 37-55. https://doi.org/10.3311/PPci.16507.
  19. Hurtado Gomez, J.E. (2010), Reliability Problems in Earthquake Engineering, Centre Internacional de Metodes Numerics en Enginyeria (CIMNE), Barcelona, Spain.
  20. Jafari, M. and Xu, H. (2019), "A biologically-inspired distributed fault tolerant flocking control for multi-agent system in presence of uncertain dynamics and unknown disturbance", Eng. Appl. Artif. Intel., 79, 1-12. https://doi.org/10.1016/j.engappai.2018.12.001.
  21. Jafari, M., Sarfi, V., Ghasemkhani, A., Livani, H., Yang, L. and Xu, H. (2019), "Adaptive intelligent secondary control of microgrids using a biologically-inspired reinforcement learning", Proceedings of 2019 IEEE Power and Energy Society General Meeting, Atlanta, GA, USA, August.
  22. Jafari, M., Xu, H. and Carrillo, L.R.G. (2017), "Brain emotional learning-based intelligent controller for flocking of multi-agent systems", Proceedings of 2017 American Control Conference, Seattle, WA, USA, May.
  23. Jamali, M.R., Arami, A., Dehyadegari, M., Lucas, C. and Navabi, Z. (2009), "Emotion on FPGA: Model driven approach", Exp. Syst. Appl., 36(4), 7369-7378. https://doi.org/10.1016/j.eswa.2008.09.067.
  24. Kayabekir, A.E., Bekdas, G., Nigdeli, S.M. and Geem, Z.W. (2020), "Optimum design of PID controlled active tuned mass damper via modified harmony search", Appl. Sci., 10(8), 2976. https://doi.org/10.3390/app10082976.
  25. Kayabekir, A.E., Nigdeli, S.M. and Bekdas, G. (2022), "A hybrid metaheuristic method for optimization of active tuned mass dampers", Comput.-Aid. Civil Infrastr. Eng., 37(8), 1027-1043. https://doi.org/10.1111/mice.12790.
  26. Khalghani, M.R., Khooban, M. H., Mahboubi-Moghaddam, E., Vafamand, N. and Goodarzi, M. (2016), "A self-tuning load frequency control strategy for microgrids: Human brain emotional learning", Int. J. Electr. Pow. Energy Syst., 75, 311-319. https://doi.org/10.1016/j.ijepes.2015.08.026.
  27. Khooban, M.H. and Javidan, R. (2016), "A novel control strategy for DVR: Optimal bi-objective structure emotional learning", Int. J. Elec. Pow. Energy Syst., 83, 259-269. https://doi.org/10.1016/j.ijepes.2016.04.014.
  28. Khorashadizadeh, S., Zadeh, S.M.H., Koohestani, M.R., Shekofteh, S. and Erkaya, S. (2019), "Robust model-free control of a class of uncertain nonlinear systems using BELBIC: Stability analysis and experimental validation", J. Brazil. Soc. Mech. Sci. Eng., 41(8), 1-12. https://doi.org/10.1007/s40430-019-1824-6.
  29. Lotfi, E. and Rezaee, A.A. (2019), "Generalized BELBIC", Neur. Comput. Appl., 31(8), 4367-4383. https://doi.org/10.1007/s00521-018-3352-1.
  30. Lucas, C., Shahmirzadi, D. and Sheikholeslami, N. (2004), "Introducing BELBIC: Brain emotional learning based intelligent controller", Intel. Autom. Soft Comput., 10(1), 11-21. https://doi.org/10.1080/10798587.2004.10642862.
  31. Markadeh, G.R., Daryabeigi, E., Lucas, C. and Rahman, M.A. (2011), "Speed and flux control of induction motors using emotional intelligent controller", IEEE Trans. Indus. Appl., 47(3), 1126-1135. https://doi.org/10.1109/TIA.2011.2125710.
  32. Moayyad, P. (1982), "A study of power spectral density of earthquake accelerograms", Ph.D. Dissertation, Southern Methodist University, Texas.
  33. Muresan, C.I., Dulf, E.H. and Prodan, O. (2016), "A fractional order controller for seismic mitigation of structures equipped with viscoelastic mass dampers", J. Vib. Control, 22(8), 1980-1992. https://doi.org/10.1177/1077546314557553.
  34. Oustaloup, A., Levron, F., Mathieu, B. and Nanot, F.M. (2000), "Frequency-band complex noninteger differentiator: Characterization and synthesis", IEEE Trans. Circuit. Syst. I: Fund. Theor. Appl., 47(1), 25-39. https://doi.org/10.1109/81.817385.
  35. Qutubuddin, M.D. and Yadaiah, N. (2021), "Performance evaluation of neurobiologically inspired brain emotional adaptive mechanism for permanent magnet synchronous motor drive", Arab. J. Sci. Eng., 1-19. https://doi.org/10.1007/s13369-021-06111-7.
  36. Rahman, M.A., Milasi, R.M., Lucas, C., Araabi, B.N. and Radwan, T.S. (2008), "Implementation of emotional controller for interior permanent-magnet synchronous motor drive", IEEE Trans. Indus. Appl., 44(5), 1466-1476. https://doi.org/10.1109/TIA.2008.2002206.
  37. Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems", Comput.-Aid. Des., 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015.
  38. Sharbafi, M.A., Lucas, C. and Daneshvar, R. (2010), "Motion control of omni-directional three-wheel robots by brain-emotional-learning-based intelligent controller", IEEE Trans. Syst. Man Cybernet. Part C (Appl. Rev.), 40(6), 630-638. https://doi.org/10.1109/TSMCC.2010.2049104.
  39. Sharma, P. and Kumar, V. (2019), "Design and analysis of a BELBIC controlled semi active suspension system", J. Phys.: Conf. Ser., 1240(1), 012017. https://doi.org/10.1088/1742-6596/1240/1/012017.
  40. Sharma, P. and Kumar, V. (2020), "Design and analysis of novel bio inspired BELBIC and PSOBELBIC controlled semi active suspension", Int. J. Vehic. Perform., 6(4), 399-424. https://doi.org/10.1504/IJVP.2020.111407.
  41. Silva, J., Aquino, R., Ferreira, A. and Marques, D. (2022), "Deep brain emotional learning-based intelligent controller applied to an inverted pendulum system", J. Supercomput., 1-21. https://doi.org/10.1007/s11227-021-04200-w.
  42. Sues, R.H., Wen, Y.K. and Ang, A.H.S. (1985), "Stochastic evaluation of seismic structural performance", J. Struct. Eng., 111(6), 1204-1218. https://doi.org/10.1061/(ASCE)0733-9445(1985)111:6(1204).
  43. Wen, Y., Gomez, F., Li, D. and Spencer Jr, B.F. (2022), "Generalized optimal design of multiple tuned inerter dampers for control of MDOF structures under stochastic seismic excitation", Struct. Control Hlth. Monit., 29(1), e2853. https://doi.org/10.1002/stc.2853.
  44. Wilson, C.M.D. (2012), "Effects of multiple MR dampers controlled by fuzzy-based strategies on structural vibration reduction", Struct. Eng. Mech., 41(3), 349-363. https://doi.org/10.12989/sem.2012.41.3.349.
  45. Wu, Q., Lin, C.M., Fang, W., Chao, F., Yang, L., Shang, C. and Zhou, C. (2018), "Self-organizing brain emotional learning controller network for intelligent control system of mobile robots", IEEE Access, 6, 59096-59108. https://doi.org/10.1109/ACCESS.2018.2874426.
  46. Yucel, M., Bekdas, G., Nigdeli, S.M. and Sevgen, S. (2019), "Estimation of optimum tuned mass damper parameters via machine learning", J. Build. Eng., 26, 100847. https://doi.org/10.1016/j.jobe.2019.100847.
  47. Zamani, A.A. and Etedali, S. (2021), "A new framework of multi-objective BELBIC for seismic control of smart base-isolated structures equipped with MR dampers", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-021-01414-7.
  48. Zamani, A.A., Tavakoli, S. and Etedali, S. (2017), "Fractional order PID control design for semi-active control of smart base-isolated structures: A multi-objective cuckoo search approach", ISA Trans., 67, 222-232. https://doi.org/10.1177/1045389X17721046.
  49. Zamani, A.A., Tavakoli, S., Etedali, S. and Sadeghi, J. (2018), "Online tuning of fractional order fuzzy PID controller in smart seismic isolated structures", Bull. Earthq. Eng., 16(7), 3153-3170. https://doi.org/10.1007/s10518-017-0294-4.