DOI QR코드

DOI QR Code

Optimal Power Flow with Discontinous Fuel Cost Functions Using Decomposed GA Coordinated with Shunt FACTS

  • Mahdad, Belkacem (Dept. of Electrical Engineering, Biskra University) ;
  • Srairi, K. (Dept. of Electrical Engineering, Biskra University) ;
  • Bouktir, T. (Dept. of Electrical Engineering, Biskra University) ;
  • Benbouzid, M.EL. (Laboratoire Brestois de Mecanique et des Systemes, University of Brest)
  • Published : 2009.12.01

Abstract

This paper presents efficient parallel genetic algorithm (EPGA) based decomposed network for optimal power flow with various kinds of objective functions such as those including prohibited zones, multiple fuels, and multiple areas. Two coordinated sub problems are proposed: the first sub problem is an active power dispatch (APD) based parallel GA; a global database generated containing the best partitioned network: the second subproblem is an optimal setting of control variables such as generators voltages, tap position of tap changing transformers, and the dynamic reactive power of SVC Controllers installed at a critical buses. The proposed approach tested on IEEE 6-bus, IEEE 30-bus and to 15 generating units and compared with global optimization methods (GA, DE, FGA, PSO, MDE, ICA-PSO). The results show that the proposed approach can converge to the near solution and obtain a competitive solution with a reasonable time.

Keywords

References

  1. J. A. Momoh, M. E. Elhawary, and R. Adapa 'A review of selected optimal power flow litterature to 1993 partl: nonlinear and quadratic programming approaches,' IEEE Trans. Power. Syst., Vol. 4 , no.1 , pp.96-104, 1999
  2. M. Huneault, and F. D. Galiana, 'A survey of the optimal power flow literature ' IEEE Trans. Power Systems, vol.6, no.2, pp.762-770, May, 1991 https://doi.org/10.1109/59.76723
  3. C. C. Kuo, 'A novel string tructure for economic dispatch prblems with practical constraints,' Journal of Energy Conversion and management, Elsevier, vol.49, pp.3571-3577, 2008 https://doi.org/10.1016/j.enconman.2008.07.007
  4. D. He, F. Wang, Z. Mao, 'A hybrid genetic algorithm approach based on differential evolution for economic dispatch with valve-point effect,' Journal of Energy Conversion and management, EIsevier, vol.30, pp.31-38, 2008 https://doi.org/10.1016/j.ijepes.2007.06.023
  5. B. Mahdad, T. Bouktir, K. Srairi, ' Optimal power flow for large-scale power system with shunt F ACTS using fast parallel GA,'. The 14th IEEE Mediterranean on Electrotechnical Conference, 2008. MELECON 5-7 May 2008. pp. 669-676, Digital Object Identifier 10.1 109/MELCON.2008.4618512
  6. S. N. Sivanandam, S.N Deepa, Introduction to Genetic Algorithm, Springer-Verlag Berlin Heidelberg, 2008
  7. R. L. Haupt, S. E. Haupt, Practical Genetic Algorithms, 2nd. Reading, John Willey & Sons, 2004
  8. A. Saini, D. K. Chaturvedi, A. K. Saxena, ' Optimal power flow soultion: a GA-Fuzzy system approach ,' International Journal of Emerging Electric Power Systems, vol.5, no.2, pp.1 -21(2006)
  9. C. R. Feurt-Esquivel, E. Acha, Tan SG, JJ. Rico, ' Efficient object oriented power systems software for the analysis of large-scale networks containing F ACTS controlled branches,' IEEE Trans. Power Systems, vol.13, no.2, pp.464-472, May, 1998 https://doi.org/10.1109/59.667370
  10. J. D, Weber, Implementation of a newton-based optimal power flow in a power system simulation envirenment, Master of science in electrical engineering, college of the university ofillinois at Urbana-Champaign;1997. http://energy.ece.uiuc.edu/jamie/publicat. htm
  11. M. S. Osman, M. A, Abo-Sinna, A. A. Mousa, 'A solution to the optimal powεr flow using genetic algorithm,' Journal of Appl. Math. Comput, vol.30, no.14, no.1 , pp.l05-111 , 1999
  12. C. A, Roa-Sepulveda, B. J, Pavez-Lazo, 'A solution to the optimal power flow using simulated annealing, ' Journal of Electric Power Energy and system(Elesevier), vol.25, no.1, pp.563-571 , 2002
  13. J, Yuryevich, K. P, Wong, 'Ev이utionary progralllilling based optimal power flow algorithm,' IEEE Trans. Power Systems, vol.14, no.4, pp.1245-1250, 1999 https://doi.org/10.1109/59.801880
  14. M. A. Abido, ' Optimal power flow using particle swarm optimization,' Journal of Electric Power Compenents and System, vol.30, no.5, pp.469-483, 2002 https://doi.org/10.1080/15325000252888425
  15. M. A. Abido, ' Optimal power flow using tabu search algorithm, ' Journal of Electric Power Energy and System(Elesevier), vol.24, no.7, pp.563-571 , 2002 https://doi.org/10.1016/S0142-0615(01)00067-9
  16. D. C. Walters, G. B, Sheble, ' Genetic algorithm solution of economic dispatch with valve point loading,' IEEE Trans. Power Systems, vol.8, no.3, pp.1325-1332, 1993 https://doi.org/10.1109/59.260861
  17. O. Alsac, B. Stott, ' Optimal load low with steadystate security,' IEEE Trans. Power Apparutus, vol.93, no.3, pp.745-751, 1974 https://doi.org/10.1109/TPAS.1974.293972
  18. W. Ondskul, T. Tantimaporn, 'Optimal power flow by improved evolutionary programming,' Journal of Electric Prwer Compenents and system, vol.34, no.1, pp.79-95, 2006 https://doi.org/10.1080/15325000691001458
  19. S. Sayah, K. Zehar , ' Modified differential evolution algorithm for optimal power flow with non-smooth cost functions,' Journal of Energy Conversioin and management, Elsevier, vol.49, pp.3362-3366, 2008 https://doi.org/10.1016/j.enconman.2007.10.033
  20. R. C. Bansal, ' Otimization methods for electric power systems: an overview,' International Journal of Emerging Electric Power Systems, vol.2, no.1, pp.1-23, 2005
  21. A. G. Bakistzis, P. N. Biskas, C. E. Zoumas, and V. Petridis, ' Optimal power f10w by enhanced genetic algorithm, 'IEEE Trans. Power Systems, vol. 17, no.2, pp.229-236, May, 2002 https://doi.org/10.1109/TPWRS.2002.1007886
  22. M. Varadarajan, K. S. Swarup, ' S01ving multiobjεctive optimal power flow using diffential evolution,' IET Gener. Transm.Disrib., vol.2, no.5, pp.720-730, 2008 https://doi.org/10.1049/iet-gtd:20070457
  23. M. Basu, ' Optimal power flow with F ACTS devices using differential evolution,' Electrical Power & Energy Systems (Elsevier), vol.30, pp.150-156, 2008 https://doi.org/10.1016/j.ijepes.2007.06.011
  24. Z. L. Gaing, ' Particle swarm optimization to solving the economic dispatch considering the generator constraints, ' IEEE Trans. Power Systems, vol. 18, no. 3, pp. 1187-1195, 2003 https://doi.org/10.1109/TPWRS.2003.814889
  25. J. G. Vlachogiannis, and K. Y. Lee, 'Economic dispatch-A comparative study on heristic optimization techniques with an improved coordinated aggregationbased PSO,' IEEE Trans. Power Systems, vol.24, no.2, pp.991-10001 , 2009 https://doi.org/10.1109/TPWRS.2009.2016524

Cited by

  1. Optimal power flow using hybrid differential evolution and harmony search algorithm 2018, https://doi.org/10.1007/s13042-018-0786-9
  2. Faster evolutionary algorithm based optimal power flow using incremental variables vol.54, 2014, https://doi.org/10.1016/j.ijepes.2013.07.019
  3. Clustered adaptive teaching–learning-based optimization algorithm for solving the optimal generation scheduling problem 2017, https://doi.org/10.1007/s00202-017-0508-4
  4. Application of Lyapunov Theory and Fuzzy Logic to Control Shunt FACTS Devices for Enhancing Transient Stability in Multimachine System vol.7, pp.5, 2012, https://doi.org/10.5370/JEET.2012.7.5.672