• 제목/요약/키워드: near infrared light source

검색결과 40건 처리시간 0.029초

Cloud-Type Classification by Two-Layered Fuzzy Logic

  • Kim, Kwang Baek
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권1호
    • /
    • pp.67-72
    • /
    • 2013
  • Cloud detection and analysis from satellite images has been a topic of research in many atmospheric and environmental studies; however, it still is a challenging task for many reasons. In this paper, we propose a new method for cloud-type classification using fuzzy logic. Knowing that visible-light images of clouds contain thickness related information, while infrared images haves height-related information, we propose a two-layered fuzzy logic based on the input source to provide us with a relatively clear-cut threshold in classification. Traditional noise-removal methods that use reflection/release characteristics of infrared images often produce false positive cloud areas, such as fog thereby it negatively affecting the classification accuracy. In this study, we used the color information from source images to extract the region of interest while avoiding false positives. The structure of fuzzy inference was also changed, because we utilized three types of source images: visible-light, infrared, and near-infrared images. When a cloud appears in both the visible-light image and the infrared image, the fuzzy membership function has a different form. Therefore we designed two sets of fuzzy inference rules and related classification rules. In our experiment, the proposed method was verified to be efficient and more accurate than the previous fuzzy logic attempt that used infrared image features.

Near-Infrared Light Propagation in an Adult Head Model with Refractive Index Mismatch

  • Kim, Seung-Hwan;Lee, Jae-Hoon
    • ETRI Journal
    • /
    • 제27권4호
    • /
    • pp.377-384
    • /
    • 2005
  • We investigate near-infrared light (NIR) propagation in a model of an adult head using an extensive Monte Carlo (MC) simulation. The adult head model is a four-layered slab which consists of a surface layer, a cerebrospinal fluid layer, a gray-matter layer, and a white-matter layer. We study the effects of a refractive index mismatch on the model, calculating the intensity of detected light, mean flight time, and partial mean flight time of each layer for various refractive indices of the cerebrospinal fluid layer as functions of source-detector spacing. The Monte Carlo simulation shows that the refractive index mismatch presents very rich results including rapidly decaying intensity of detected light and a peak and cross-over in the partial mean flight time with source-detector spacing. We also investigate spatial sensitivity profiles at various source-detector spacings, discussing the index mismatch effect on the model.

  • PDF

NEW DEVELOPED PORTABLE NEAR INFRARED (NIR) SYSTEM USING MICROSPECTROMETER

  • Woo, Young-Ah;Ha, Tae-Kyu;Kim, Jae-Min;Kim, Hyo-Jin
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1123-1123
    • /
    • 2001
  • In recent years, a miniature spectrometer has been extensively developed due to the marriage of fiber optics and semiconductor detector array. This type of miniature spectrometer has advantages of low price and robustness due to the capability of mass production and no moving parts are required such as lenses, mirrors and scanning monochromator. These systems are ideal for use in teaching labs, process monitoring and field analyses. A portable near infrared (NIR) system has been developed for qualitative and quantitative analysis. This system includes a tungsten halogen lamp for light source, a fiber optics connected a light source, and a sample module to the microspectrometer, The size of spectrometer can be as small as 2.5 cm x 1.5 cm x 0.1 cm. Wavelength ranges can be chosen as 360-800 nm, 800-1100 nm and 1100-1900 nm depending on the type of detector. The software consists of various tools for multivariate analysis and pattern recognition techniques. To evaluate the system, long and short-term stability, wavelength accuracy, and stray light have been investigated and compared with conventional scanning type NIR spectrometer. This developed system can be sufficiently used for quantitative and qualitative analysis for various samples such as agricultural product, herbal medicine, food, petroleum, and pharmaceuticals, etc.

  • PDF

근적외선 확산반사 분광법을 이용한 흉터치료 평가 (Evaluation of the Scar Treatment using Near Infrared Diffuse Reflectance Spectroscopy)

  • 장익제;윤종인
    • 대한의용생체공학회:의공학회지
    • /
    • 제37권1호
    • /
    • pp.53-60
    • /
    • 2016
  • Monitoring of dermal collagen is important to assess various scar conditions, and many diagnostic methods have been applied to quantify collagen contents in scar tissue. In this study, Monte Carlo simulation was used to evaluate diffuse reflectance distributions in scar condition by a near-infrared laser source. The results showed that the effective distance of the light source and the detector was 2 mm to monitor the various scar conditions using diffuse reflectance spectroscopy. This study may suggest to the optimal design for a near infrared diffuse reflectance spectroscopy during the scar treatment.

Assessment and Comparison of Three Dimensional Exoscopes for Near-Infrared Fluorescence-Guided Surgery Using Second-Window Indocyanine-Green

  • Cho, Steve S.;Teng, Clare W.;Ravin, Emma De;Singh, Yash B.;Lee, John Y.K.
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권4호
    • /
    • pp.572-581
    • /
    • 2022
  • Objective : Compared to microscopes, exoscopes have advantages in field-depth, ergonomics, and educational value. Exoscopes are especially well-poised for adaptation into fluorescence-guided surgery (FGS) due to their excitation source, light path, and image processing capabilities. We evaluated the feasibility of near-infrared FGS using a 3-dimensional (3D), 4 K exoscope with near-infrared fluorescence imaging capability. We then compared it to the most sensitive, commercially-available near-infrared exoscope system (3D and 960 p). In-vitro and intraoperative comparisons were performed. Methods : Serial dilutions of indocyanine-green (1-2000 ㎍/mL) were imaged with the 3D, 4 K Olympus Orbeye (system 1) and the 3D, 960 p VisionSense Iridium (system 2). Near-infrared sensitivity was calculated using signal-to-background ratios (SBRs). In addition, three patients with brain tumors were administered indocyanine-green and imaged with system 1, with two also imaged with system 2 for comparison. Results : Systems 1 and 2 detected near-infrared fluorescence from indocyanine green concentrations of >250 ㎍/L and >31.3 ㎍/L, respectively. Intraoperatively, system 1 visualized strong near-infrared fluorescence from two, strongly gadolinium-enhancing meningiomas (SBR=2.4, 1.7). The high-resolution, bright images were sufficient for the surgeon to appreciate the underlying anatomy in the near-infrared mode. However, system 1 was not able to visualize fluorescence from a weakly-enhancing intraparenchymal metastasis. In contrast, system 2 successfully visualized both the meningioma and the metastasis but lacked high resolution stereopsis. Conclusion : Three-dimensional exoscope systems provide an alternative visualization platform for both standard microsurgery and near-infrared fluorescent guided surgery. However, when tumor fluorescence is weak (i.e., low fluorophore uptake, deep tumors), highly sensitive near-infrared visualization systems may be required.

주파수 영역 확산광 단층촬영 장치를 이용한 광 팬텀 및 인체조직의 광 계수 측정 (Optical Property Measurements of Optical Phantoms and Honan Tissues Using Frequency-Domain Diffuse Optical Tomography)

  • 호동수;권기운;엄기윤;이승덕;김법민
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권2호
    • /
    • pp.229-234
    • /
    • 2007
  • Diffuse optical tomography (DOT) is a relatively new medical imaging modality which uses near infrared light to image large-sized tissues noninvasively. We constructed a frequency-domain DOT system to measure the optical properties of optical phantoms and human tissues. The FD-DOT uses the intensity-modulated infrared light source that illuminates the biological tissues. The phase shift and modulation changes at each detector site are separately processed to measure the optical properties. The absorption and scattering coefficients are separately estimated using inverse algorithms.

Study on the Performance of Infrared Thermal Imaging Light Source for Detection of Impact Defects in CFRP Composite Sandwich Panels

  • Park, Hee-Sang;Choi, Man-Yong;Kwon, Koo-Ahn;Park, Jeong-Hak;Choi, Won-Jae;Jung, Hyun-Chul
    • 비파괴검사학회지
    • /
    • 제37권2호
    • /
    • pp.91-98
    • /
    • 2017
  • Recently, composite materials have been mainly used in the main wings, ailerons, and fuselages of aircraft and rotor blades of helicopters. Composite materials used in rapid moving structures are subject to impact by hail, lightning, and bird strike. Such an impact can destroy fiber tissues in the composite materials as well as deform the composite materials, resulting in various problems such as weakened rigidity of the composite structure and penetration of water into tiny cracks. In this study, experiments were conducted using a 2 kW halogen lamp which is most frequently used as a light source, a 2 kW near-infrared lamp, which is used for heating to a high temperature, and a 6 kW xenon flash lamp which emits a large amount of energy for a moment. CFRP composite sandwich panels using Nomex honeycomb core were used as the specimens. Experiments were carried out under impact damages of 1, 4 and 8 J. It was found that the detection of defects was fast when the xenon flash lamp was used. The detection of damaged regions was excellent when the halogen lamp was used. Furthermore, the near-infrared lamp is an effective technology for showing the surface of a test object.

음향광학 파장선택 필터 기반 파장훑음 레이저를 이용한 시간-인코딩 된 근적외선 흡광도 측정 비교 연구 (Time-encoded Near-infrared (NIR) Spectroscopic Comparison of Absorbance Measurement Using an Acousto-optic NIR Swept Laser Source)

  • 장한솔;김경훈;한가희;조재두;김창석
    • 한국광학회지
    • /
    • 제28권1호
    • /
    • pp.22-27
    • /
    • 2017
  • 본 논문에서는 음향광학 파장선택 필터(acousto-optic tunable filter) 기반의 파장훑음 레이저(wavelength swept laser)를 이용한 시간-인코딩 근적외선 분광 기술(time-encoded near-infrared spectroscopy)을 제안하였다. 파장훑음 레이저는 800 nm 근처 영역에서 이득 스펙트럼을 가지는 반도체 광 증폭기(semiconductor optical amplifier)를 기반으로 제작되었으며, 음향광학 파장선택 필터를 공진기 내부에 삽입함으로써 음향광학 파장선택 필터에 인가되는 전기적 라디오주파수에 따라 출력 파장을 선택할 수 있도록 하였다. 본 연구에서는 종래의 기술인 백색광 분광기 기반의 검출부 분광 근적외선 분광 기술과 제안된 파장훑음 레이저 기반의 광원부 분광 근적외선 분광 기술을 각각 이용하여 근적외선 흡수 염료 샘플의 흡광도를 각기 측정하여 실험적으로 비교함으로써 본 연구에서 제안하는 음향광학 파장선택 필터 기반 파장훑음 레이저를 이용한 근적외선 분광 기술의 특성을 증명하였다.

자외선 유도 형광의 사과 성숙도 평가 적용 (UV/blue Light-induced Fluorescence for Assessing Apple Quality)

  • 노현권
    • Journal of Biosystems Engineering
    • /
    • 제35권2호
    • /
    • pp.124-131
    • /
    • 2010
  • Chlorophyll fluorescence has been researched for assessing fruit post-harvest quality and condition. The objective of this preliminary research was to investigate the potential of fluorescence spectroscopy for measuring apple fruit quality. Ultraviolet (UV) and blue light was used as an excitation source for inducing fluorescence in apples. Fluorescence spectra were measured from 'Golden Delicious' (GD) and 'Red Delicious' (RD) apples using a visible/near-infrared spectrometer after one, three, and five minutes of continuous UV/blue light illumination. Standard destructive tests were performed to measure fruit firmness, skin and flesh color, soluble solids and acid content from the apples. Calibration models for each of the three illumination time periods were developed to predict fruit quality indexes. The results showed that fluorescence emission decreased steadily during the first three minutes of UV/blue light illumination and was stable within five minutes. The differences were minimal in the model prediction results based on fluorescence data at one, three or five minutes of illumination. Overall, better predictions were obtained for apple skin chroma and hue and flesh hue with values for the correlation coefficient of validation between 0.80 and 0.90 for both GD and RD. Relatively poor predictions were obtained for fruit firmness, soluble solids content, titrational acid, and flesh chroma. This research has demonstrated that fluorescence spectroscopy is potentially useful for assessing selected quality attributes of apple fruit and further research is needed to improve fluorescence measurements so that better predictions of fruit quality can be achieved.

Infrared Light Absorbance: a New Method for Temperature Compensation in Nondispersive Infrared CO2 Gas Sensor

  • Yi, Seung Hwan
    • 센서학회지
    • /
    • 제29권5호
    • /
    • pp.303-311
    • /
    • 2020
  • Nondispersive infrared CO2 gas sensor was developed after the simulation of optical cavity structure and assembling the optical components: IR source, concave reflectors, Fresnel lens, a hollow disk, and IR detectors. By placing a hollow disk in front of reference IR detector, the output voltages are almost constant value, near to 70.2 mV. The absorbance of IR light, Fa, shows the second order of polynomial according to ambient temperatures at 1,500 ppm. The differential output voltages and the absorbance of IR light give a higher accuracy in estimations of CO2 concentrations with less than ± 1.5 % errors. After implementing the parameters that are dependent upon the ambient temperatures in microcontroller unit (MCU), the measured CO2 concentrations show high accuracies (less than ± 1.0 %) from 281 K to 308 K and the time constant of developed sensor is about 58 sec at 301 K. Even though the estimation errors are relatively high at low concentration, the developed sensor is competitive to the commercial product with a high accuracy and the stability.