DOI QR코드

DOI QR Code

Infrared Light Absorbance: a New Method for Temperature Compensation in Nondispersive Infrared CO2 Gas Sensor

  • Yi, Seung Hwan (College of Convergence Technology, Korea National Unversity of Transportation)
  • Received : 2020.08.31
  • Accepted : 2020.09.28
  • Published : 2020.09.30

Abstract

Nondispersive infrared CO2 gas sensor was developed after the simulation of optical cavity structure and assembling the optical components: IR source, concave reflectors, Fresnel lens, a hollow disk, and IR detectors. By placing a hollow disk in front of reference IR detector, the output voltages are almost constant value, near to 70.2 mV. The absorbance of IR light, Fa, shows the second order of polynomial according to ambient temperatures at 1,500 ppm. The differential output voltages and the absorbance of IR light give a higher accuracy in estimations of CO2 concentrations with less than ± 1.5 % errors. After implementing the parameters that are dependent upon the ambient temperatures in microcontroller unit (MCU), the measured CO2 concentrations show high accuracies (less than ± 1.0 %) from 281 K to 308 K and the time constant of developed sensor is about 58 sec at 301 K. Even though the estimation errors are relatively high at low concentration, the developed sensor is competitive to the commercial product with a high accuracy and the stability.

Keywords

References

  1. http://heimannsensor.com (retrieved on Jan. 2, 2019).
  2. http://www.infratec.ed (retrieved on Jan. 2, 2019).
  3. http://www.hawkeyetechnologies.com (retrieved on Jan. 2, 2019).
  4. http://www.eot.it (retrieved on Jan. 2, 2019).
  5. R. Eisberg and R. Resnick, Quantum physics of atoms, molecules, solids, nuclei, and particles, John Wiley and Sons, New York, pp. 1-25, 1985.
  6. J. H. Kim and S. H. Yi, "Effects of temperature and humidity on NDIR CO2 gas sensor", J. Sens. Sci. Technol., Vol. 26, No. 3, pp. 179-185, 2017. https://doi.org/10.5369/JSST.2017.26.3.179
  7. J. Hodgkinson, R. Smith, W. O. Ho, J. R. Saffell, and R. P. Tatam, "Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor", Sens. Actuators B, Vol. 186, pp. 580-588, 2013. https://doi.org/10.1016/j.snb.2013.06.006
  8. A. Sklorz, S. JanBen, and W. Lang, "Detection limit improvement for NDIR ethylene gas detectors using passive approaches", Sens. Actuators, Vol. 175, pp. 246-254, 2012. https://doi.org/10.1016/j.snb.2012.09.085
  9. J. H. Han, S. W. Han, S. M. Kim, J. J. Park, and S. Moon, "High detection performance of NDIR CO2 sensor using stair-tapered reflector", IEEE Sens. J., Vol. 13, No. 8, pp. 3090-3097, 2013. https://doi.org/10.1109/JSEN.2013.2262268
  10. http://www.ssi.shimadzu.com (retrieved on Jan. 3, 2019).
  11. http://www.vaisala.com (retrieved on Jan. 3, 2019).
  12. http://www.geinstruments.com (retrieved on Jan. 3, 2019).
  13. J. H. Kim, H. G. Park, and S. H. Yi, "IR absorbance as a criterion for temperature compensation in nondispersive infrared gas sensor", Proc. Eurosens., p. P9-ID 7106, Graz, Austria, 2018.
  14. J. H. Kim, S. H. Shin, and S. H. Yi, "Effects of infrared energy on dual elliptical NDIR ethanol gas sensors", Proc. Eurosens., p. T-CS-302-1083, Paris, France, 2017.
  15. J. S. Park and S. H. Yi, "Nondispersive infrared ray CH4 gas sensor using focused infrared beam structures", Sens. Mater., Vol. 23, No. 3, pp. 147-158, 2011.
  16. J. Mayrwoger, P. Hauer, W. Reichl, R. Schwodiaer, C. Krutzler, and B. Jakoby, "Modeling of infrared gas sensors using a ray tracing approach", IEEE Sens. J., Vol. 10, No. 11, pp. 1691-1698, 2010. https://doi.org/10.1109/JSEN.2010.2046033
  17. J. H. Kim, K. H. Lee, and S. H. Yi, "NDIR ethanol gas sensor with two elliptical optical structure", Procedia Eng., Vol. 168, pp. 359-362, 2016. https://doi.org/10.1016/j.proeng.2016.11.122
  18. J. H. Kim, J. Y. Lee, K. H. Lee, and S. H. Yi, "Enhanced characteristics of nondispersive infrared CO2 gas sensor by deposition of hydrophobic thin film", Proc. Eurosens., p. M-CS-302-1084, Paris, France, 2017.
  19. B. Hok, H. Petterson, A. K. Anderson, S. Haasl, and P. Akerlund, "Breath analyzer for alcolocks and screening devices", IEEE Sens. J., Vol. 10, No. 1, pp. 10-15, 2010. https://doi.org/10.1109/JSEN.2009.2035204
  20. J. S. Park, H. C. Cho, and S. H. Yi, "Temperature compensated NDIR CH4 sensor with focused beam", Procedia Eng., Vol. 5, pp. 303-306, 2010. https://doi.org/10.1016/j.proeng.2010.09.108
  21. H. G. Park and S. H. Yi, "Analysis of Output voltage properties of non-dispersive infrared gas sensors according to ambient temperatures", J. Sens. Sci. Technol., Vol. 27, No. 5, pp. 294-299, 2018. https://doi.org/10.5369/JSST.2018.27.5.294
  22. J. U. White, "Long optical paths of large aperture", J. Opt. Soc. Am., Vol. 32, No. 5, pp. 285-288, 1942. https://doi.org/10.1364/JOSA.32.000285
  23. C. Hummelgard, I. Bryntse, M. Bryzgalov, J. A. Henning, H. Matin, M. Noren, and H. Rodjegard, "Low-cost NDIR based sensor platform for sub-ppm gas detection", Urban Clim., Vol. 14, pp. 342-350, 2015. https://doi.org/10.1016/j.uclim.2014.09.001
  24. A. K. Zaouk, M. Wills, E. Traube, and R. Strassburger, "Driver alcohol detection system for safety (DADSS) - A Status update", Proc. ESV 2015, p. 15-0276, Gothenburg, Sweden, 2015.
  25. M. Guinet, A. W. Mantz, and D. Mondelain, "Performance of a 12.49 meter folded path copper Herriott cell designed for temperatures between 296 and 20 K", Appl. Phys. B, Vol. 100, No. 2, pp. 279-282, 2010. https://doi.org/10.1007/s00340-010-3946-5
  26. S. H. Yi, Y. H. Park, and J. K. Lee, "Temperature dependency of non-dispersive infrared carbon dioxide gas sensor by using White-Cell structure", J. Sens. Sci. Technol., Vol. 25, No. 5, pp. 377-381, 2016. https://doi.org/10.5369/JSST.2016.25.5.377
  27. T. A. Vincent and J. W. Gardner, "A low cost MEMS based NDIR system for the monitoring of carbon dioxide in breath analysis at ppm levels", Sens. Actuators B, Vol. 236, pp. 954-964, 2016. https://doi.org/10.1016/j.snb.2016.04.016
  28. L. Jun, T. Qiulin, Z. Wendong, X. Chenyang, G. Tao, and X. Jijun, "Miniature low-power IR monitor for methane detection", Measurement, Vol. 44, pp. 823-831, 2011. https://doi.org/10.1016/j.measurement.2011.01.021
  29. W. B. DeMore and M. Patapoff, "Temperature and Pressure Dependence of CO2 Extinction Coefficients", J. Geophys. Res., Vol. 77, No. 31, pp. 6291-6293, 1972. https://doi.org/10.1029/JA077i031p06291