• 제목/요약/키워드: natural vibration

검색결과 3,237건 처리시간 0.027초

Study on the Vibration Analysis of Damper Clutch Spring (댐퍼 클러치 스프링의 진동 해석에 관한 연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • 제10권4호
    • /
    • pp.22-30
    • /
    • 2011
  • This study analyzes harmonic vibration with natural frequency according to the configuration of damper clutch. In the case of double spring, equivalent stress at same direction of the revolution at inner and outer coil spring is over 30% as compared with at its opposite direction. Natural frequency or harmonic response with maximum deformation in case of the less coil pitch is below 3Hz as compared with in case of the more coil pitch. As the coil pitch of damper spring as the case 2 or 4 becomes smaller, its mass and deformation can be large. In these cases, spring constant and natural frequency become smaller. In the case 5 or 6 of double spring at natural vibration or harmonic response, the frequency becomes over 300Hz. As the result of this study is applied by the design of damper spring, the damage at its connected part is prevented and the durability can be predicted.

Flapwise bending vibration analysis of rotating cantilever beams considering shear and rotary inertial effects (전단 및 단면 회전관성효과를 고려한 회전 외팔보의 면외 굽힘진동해석)

  • Shin, Sang-Ha;Yoo, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제21권10호
    • /
    • pp.1580-1588
    • /
    • 1997
  • A modeling method for the flapwise bending vibration of a rotating cantilever beam which has small slenderness ratio is presented in this paper. It is shown that as the slenderness ratio decreases the shear and rotary inertia effects increase. Such effects become critical for the accurate estimation of the natural frequencies and modeshapes, especially higher frequencies and modes, as the angular speed increases. It is also shown that the flapwise bending natural frequencies are higher than the chordwise bending natural frequencies. The discrepancy between first natural frequencies are especially significant when the hub radius ratio is small.

Flapwise Bending Vibration Analysis of Rotating Cantilever Plates (회전 외팔평판의 면외 방향 굽힘진동 해석)

  • Kim, Sung-Kyun;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.613-618
    • /
    • 2000
  • It is well known that the rotating motion of a blade-like structure induces centrifugal inertia force that causes the variation of the natural frequencies of the structure. Even though most of blade-like structures can be successfully Idealized as beams, some behave like plates rather than beams. This paper presents a modeling method for the flapwise bending vibration analysis of rotating cantilever plates. The dependence of natural frequencies and free vibration modes on the angular speed as well as the aspect ratio of a rotating plate is investigated. Particularly. the natural frequency loci crossing is observed and discussed In the present study.

  • PDF

Free Vibration Analysis of Axisymmetric Conical Shell

  • Choi, Myung-Soo;Yeo, Dong-Jun;Kondou, Takahiro
    • Journal of Power System Engineering
    • /
    • 제20권2호
    • /
    • pp.5-16
    • /
    • 2016
  • Generally, methods using transfer techniques, like the transfer matrix method and the transfer stiffness coefficient method, find natural frequencies using the sign change of frequency determinants in searching frequency region. However, these methods may omit some natural frequencies when the initial frequency interval is large. The Sylvester-transfer stiffness coefficient method ("S-TSCM") can always obtain all natural frequencies in the searching frequency region even though the initial frequency interval is large. Because the S-TSCM obtain natural frequencies using the number of natural frequencies existing under a searching frequency. In this paper, the algorithm for the free vibration analysis of axisymmetric conical shells was formulated with S-TSCM. The effectiveness of S-TSCM was verified by comparing numerical results of S-TSCM with those of other methods when analyzing free vibration in two computational models: a truncated conical shell and a complete (not truncated) conical shell.

Analysis on Dynamic Characteristics of an Observatory Tower by Using Mobile-phone Application (휴대폰 애플리케이션을 통한 타워전망대 동적특성 분석)

  • Moon, Sang-Hyouen;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • 제16권2호
    • /
    • pp.47-54
    • /
    • 2016
  • It is very important to calculate natural frequency of the observatory tower correctly because it is keenly affected by wind response vibration due to its large slenderness ratio, weight and small damping ratio. Additionally, suggestion equation of natural frequency being used in the design phase has considerable difference between actual measured value thereby making it inappropriate to be used in the serviceability design of the observatory tower. Therefore, this paper conducted an ambient vibration measuring on 10 observatory towers through mobile-phone application thereby calculating the natural frequency and comparing the result with the domestic and foreign standards and that of the eigen-value analysis. This paper suggested approximate equation of the natural frequency of the observatory tower; T=0.0266H. The square of the corelation coefficient is 0.940, which is high.

Vibration Analysis of Cantilever Plates Undergoing Translationally Accelerated Motion (병진 가속도 운동을 하는 외팔평판의 진동해석)

  • Kim, Sung-Kyun;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.349-354
    • /
    • 2001
  • A structure which is accelerated in the chordwise direction induces variation of the bending stiffness due to inertia force. Thus, the characteristic of natural vibration is also changed. This paper presents a modeling method for the vibration analysis of translationally accelerated cantilever plates. The dependence of natural frequencies and modes on the acceleration changes of the plate is investigated. Particularly, a natural frequency loci veering is observed and discussed in the present study.

  • PDF

Dynamic Modeling of the Stator Core of the Electrical Machine Using Orthotroic Characteristics (이방성을 고려한 회전기기 고정자 코어의 동적 모델링)

  • Kim, Heui-Won;Lee, Soo-Mok;Kim, Kwan-Young;Bae, Jong-Gug
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.1044-1048
    • /
    • 2002
  • The experimental modal testing has been carried out for the stator of a generator to confirm the vibrational mode shapes and the corresponding natural frequencies. The model of the stator for the vibration analysis was developed and a series of vibration analyses was carried out. And the properties of the solid element were updated to reduce the differences of the natural frequencies between the measured and the analysed. In the vibration anlyses, the axial, radial and circumferential properties of the solid element were separately varied to take into account the orthotropic effect of the laminated structure and to match the primary modes of the stator core which were extracted from the modal testing. After several attempts to match the measured natural frequencies and model shapes, the properties of the stator model were determined. Comparison of the vibration analyses results based on the determined properties showed fairly good coincidence with the measured data.

  • PDF

Structural Vibration Analysis of Electronic Equipment for Satellite under Launch Environments (발사환경에 대한 위성 전장품의 구조진동 해석)

  • 정일호;박태원;한상원;서종휘;김성훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제21권8호
    • /
    • pp.120-128
    • /
    • 2004
  • The impulse between launch vehicle and atmosphere can generate a lot of noise and vibration during the process of launching a satellite. Structurally, the electronic equipment of a satellite consists of an aluminum case containing PCB. Each PCB has resistors and IC. Noise and vibration of the wide frequency band are transferred to the inside of fairing, subsequently creating vibration of the electronic equipment of the satellite. In this situation, random vibration can cause malfunctioning of the electronic equipment of the device. Furthermore, when the frequency of random vibration meets with natural frequency of PCB, fatigue fracture may occur in the part of solder joint. The launching environment, thus, needs to be carefully considered when designing the electronic equipment of a satellite. In general, the safety of the electronic equipment is supposed to be related to the natural frequency, shapes of mode and dynamic deflection of PCB in the electronic equipment. Structural vibration analysis of PCB and its electronic components can be performed using either FEM or vibration test. In this study, the natural frequency and dynamic deflection of PCB are measured by FEM, and the safety of the electronic components of PCB is evaluated according to the results. This study presents a unique method for finite element modeling and analysis of PCB and its electronic components. The results of FEA are verified by vibration test. The method proposed herein may be applicable to various designs ranging from the electronic equipments of a satellite to home electronics.

Vibration mode characteristics on a propeller in very large vessel (대형선박의 추진기 진동 모드 특성)

  • 김재홍;조대승;한성용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.955-962
    • /
    • 2002
  • According to the trends of construction of large size vessel with high power, the natural frequencies of the bending modes of propeller blades have been lower than the past. Therefore, it is expected that the noise and vibration problems of the marine propeller are frequently occurred. As main issue of the propeller noise and vibration problem, the cavitation noise and singing noise due to the flow induced excitation of the bending modes of propeller blade in the high frequency range has been studied by the hydrodynamic researchers in the view point of the excitation force reduction. In this paper, the vibration mode characteristics of propeller with a large diameter in very large vessel are investigated by the vibration analysis of the finite element method using MSC/Nastran and the vibration measurement by the impact test on the propeller blade. According to the results, the natural frequencies of various blade bending modes in water entrained condition could be estimated from the natural frequencies taken by the measurement and free vibration analysis in the dry condition, and it could be estimated how the high frequency noise such as singing is generated from the blade bending modes.

  • PDF

Flexural and axial vibration analysis of beams with different support conditions using artificial neural networks

  • Civalek, Omer
    • Structural Engineering and Mechanics
    • /
    • 제18권3호
    • /
    • pp.303-314
    • /
    • 2004
  • An artificial neural network (ANN) application is presented for flexural and axial vibration analysis of elastic beams with various support conditions. The first three natural frequencies of beams are obtained using multi layer neural network based back-propagation error learning algorithm. The natural frequencies of beams are calculated for six different boundary conditions via direct solution of governing differential equations of beams and Rayleigh's approximate method. The training of the network has been made using these data only flexural vibration case. The trained neural network, however, had been tested for cantilever beam (C-F), and both end free (F-F) in case the axial vibration, and clamped-clamped (C-C), and Guided-Pinned (G-P) support condition in case the flexural vibrations which were not included in the training set. The results found by using artificial neural network are sufficiently close to the theoretical results. It has been demonstrated that the artificial neural network approach applied in this study is highly successful for the purposes of free vibration analysis of elastic beams.