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Abstract: Generally, methods using transfer techniques, like the transfer matrix method and the transfer 

stiffness coefficient method, find natural frequencies using the sign change of frequency determinants in 

searching frequency region. However, these methods may omit some natural frequencies when the initial 

frequency interval is large. The Sylvester-transfer stiffness coefficient method (“S-TSCM”) can always 

obtain all natural frequencies in the searching frequency region even though the initial frequency interval 

is large. Because the S-TSCM obtain natural frequencies using the number of natural frequencies 

existing under a searching frequency. In this paper, the algorithm for the free vibration analysis of 

axisymmetric conical shells was formulated with S-TSCM. The effectiveness of S-TSCM was verified by 

comparing numerical results of S-TSCM with those of other methods when analyzing free vibration in 

two computational models: a truncated conical shell and a complete (not truncated) conical shell. 
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1. Introduction

From loud speakers to aerospace structures, 

conical shells have been used in many industrial 

fields. For the free vibration of these conical 

shells, many researchers have studied a variety of 

methods, for examples, the Rayleigh-Ritz method1), 

the finite element method2), the transfer matrix 

method3), and the transfer influence coefficient 

method4).

Recently, the most engineers and researchers 

have used the finite element method for the free 

vibration of shell structures, because this method 

can readily analyze a variety of shell structures 

using various shell elements. However, generally, 

the computational results of the vibration analysis 

for a structure by the finite element method are 

excellent if the structure is divided into a number 

of elements in the modeling. Thus, if we model 

the conical shell as an analytical model with a 

number of shell elements to obtain accurate 

natural frequencies and modes, the finite element 

method requires a large memory and a long time 

in the computational process.

We suggested a new method to significantly 

reduce computational time and memory without 

omitting the natural frequencies in the free 

vibration analysis of beam structures5). The 

algorithm was developed from a combination of 

Sylvester’s inertia theorem6) and the transfer 
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stiffness coefficient method7). It is referred to as 

the “Sylvester-transfer stiffness coefficient method” 

(S-TSCM). Because S-TSCM can compute the 

number of natural frequencies existing under the 

searching frequency, S-TSCM can always find all 

natural frequencies in searching frequency region 

even though the initial frequency interval is large. 

Thus, S-TSCM can carry out a free vibration 

analysis stably and quickly.

In this paper, an algorithm for the free 

vibration analysis of axisymmetric conical shells 

was formulated using S-TSCM. The effectiveness 

of S-TSCM was assessed by comparing 

computational results obtained by S-TSCM with 

those obtained by other methods when analyzing 

the free vibration of two computational models: a 

truncated conical shell and a complete (not 

truncated) conical shell.

2. Algorithms

2.1 Analytical model

Fig. 1 shows an analytical model for an 

axisymmetric conical shell with elastic support 

springs. When the conical shell is divided into n 

truncated conical shell elements, the conical shell 

has total n+1 nodes.

When analyzing the vibration of the 

axisymmetric conical shell, each node has four 

degrees-of-freedom. The nodal displacement vector 

(d       ) is composed of meridian, 

circumferential, and normal displacements 

(    ) and an angular displacement 

(  ). The nodal force vector 

( f       ) consists of three forces 

(    ) and a bending moment (). The 

right superscript T indicates transposition. s is the 

local coordinate along meridian direction.

Fig. 1 Analytical model

Fig. 2 Truncated conical shell element

If some nodes of the analytical model have 

elastic support springs, they are modeled with four 

elastic springs per node. The four springs consist 

of meridian, circumferential, normal springs, and a 

rotational spring. We denote their constants as 

      and .

In the transfer stiffness coefficient method7), the 

boundary conditions at the left and right ends of 

the analytical model are modeled as the elastic 
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support springs of the first node (node 1) and the 

last node (node n+1).

2.2 FE-TSCM

The finite element-transfer stiffness coefficient 

method (FE-TSCM)8) was developed by a 

combination of the modeling technique of the 

finite element method and the transfer technique 

of the transfer stiffness coefficient method to 

analyze the vibration of structures efficiently.

In this paper, the subscript i means the physical 

quantities of node i or the i-th truncated conical 

shell element, and the symbols with and without 

the symbol ‘–’ denote the physical quantities at 

the left side of node i (the right end of the 

(i-1)-th truncated conical shell element) and the 

right side of node i (the left end of the i-th 

truncated conical shell element).

The positive directions of forces and 

displacements of both ends of the i-th truncated 

conical shell element are shown in Fig. 2. The 

relationships between the force and the 

displacement vectors at the left and right sides of 

node i are defined as follows, making use of the 

dynamic stiffness coefficient matrices S   and S   
(size: 4 × 4, symmetric) :

f   S d  ,                     (1)

f  S d  ,                     (2)

where f              and f  
        

 are the force vectors of 

the left and right sides of node i, respectively, 

d          is the displacement vector 

of node i.

If node i has elastic support spring, the balance 

of the forces and moments on both sides of node 

i yields

f   f  P d       ⋯  ,    (3)

where 

P  










   

   

   

   

.             (4)

We can derive the matrix S   from Eqs. (1)-(3) 

as follows :

S   S  P  i    ⋯ n .       (5)

Eq. (5) is called the point transmission rule to 

obtain the dynamic stiffness coefficient matrix S   
at the right side of node i from S   at the left 

side of node i.

When the analytical model vibrates at frequency 

, the relations between the force vector and the 

displacement vector at the left and right ends of 

the i–th truncated conical shell element (Fig. 2) 

are defined as follows by making use of the 

submatrices (A  , B  , and C ) of the element 

dynamic stiffness matrix which is derived from the 

mass and stiffness matrices of the i-th truncated 

conical shell element9).

 f f  



 


A  B 

B  C  
d d ,       (6)

We can derive the matrix S  from Eq. (1) in 

which the subscript i is changed to i+1, Eq. (2) 

and Eq. (6) as follows:

S  C  B TV  i    ⋯ n ,   (7)

where

G  G T S  A  ,
V  G B       ⋯  .        (8)
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Eq. (7) is called the field transmission rule to 

obtain the dynamic stiffness coefficient matrix 

S  at the left side of node i+1 from S   at the 

right side of node i.

We can derive the matrix S as follows from 

f    and from Eqs. (2) and (3) in which the 

subscript i is changed to 1 :

S P .                               (9)

After first obtaining the matrix S from Eq. 

(9), the matrix S can be finally obtained by 

applying Eqs. (5) and (7) successively. From 

f   , d≠, and Eq. (2) in which the 

subscript i is changed to n+1, the frequency 

equation can be driven as

S  .                        (10)

If the bisection method10) is used to find a 

solution of Eq. (10), then false roots11), which are 

not natural frequencies, may be obtained. To 

overcome this problem, we compute the natural 

frequencies of the analytical model using the sign 

change of the following function,

 


 sgnG  ∙sgnS ,  (11)

where  is the searching frequency, which is an 

assumed value for the natural frequency . 

After obtaining a natural frequency, the natural 

mode corresponding to the natural frequency can 

be obtained as follows. First, the displacement 

vector (d) of the last node is computed from 

Eq. (2) in which the subscript i is changed to 

n+1, f  Sd  . The displacement 

vector of the other nodes can be successively 

computed using Eq. (12) which is derived from 

Eqs. (2), (6), and (8). Finally, the displacement 

vectors of all nodes are divided by the maximum 

value among all displacements to normalize the 

natural mode.

d  V d       ⋯  .  (12)

2.3 Sturm sequence method12)

The equations of motion for the undamped free 

vibration of a multiple degree-of-freedom system 

can be changed into the eigenvalue problem of 

matrix form,

K d  M d ,                      (13)

where M  and K   are the system mass and 

stiffness matrices, respectively, d  is the system 

displacement vector, and  is the eigenvalue and 

the square of the natural circular frequency . M  
and K  (size: 4(n+1) × 4(n+1)) for the analytical 

model shown in Fig. 1 can be obtained by 

assembling the mass and stiffness matrices (size: 4 

× 4) for the n+1 truncated conical shell elements. 

Generally, both M   and K  are real and 

symmetric matrices, M  is the positive definite 

matrix, and K   is the non-negative definite matrix. 

d is made up of the displacement vectors of all 

nodes, d  d d d ⋯ d  .

Eq. (13) can be changed into Sd  , where 

S is the system dynamic stiffness matrix, 

S K  M  K  M . For a nontrivial 

solution of Eq. (13), the characteristic equation 

can be driven as

S  .                            (14)

On the other hand, S can be decomposed as 

LDL, where L
 

is a lower triangular matrix in 

which the diagonal coefficients are all ones and 

D  is a diagonal matrix. From Sturm’s theorem13), 
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the number of negative eigenvalues of S   is 

equal to the number of negative diagonal 

coefficients of D .
If  is the searching eigenvalue which is an 

assumed value for the eigenvalue , S  , that 

is K  M  , can be factored into LDL, and 

the number of the negative coefficients in D  is 

equal to the number of the eigenvalues that are 

smaller than . Thus, if  is the square of , 

the number of the negative coefficients in D  is 

equal to that of the natural circular frequencies 

that are smaller than .

2.4 S-TSCM

The system dynamic stiffness matrix S  (size: 

4(n+1) × 4(n+1)) for the analytical model of Fig. 

1 can be expressed in detail by the matrices A  , 
B , C  , and P   (size: 4 × 4), shown in Section 2.2.

S 











E  B    ⋯  

B  E  B   ⋯  

 B  E  B ⋯  

  B  E  ⋯  

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
    ⋯ E  B 
     B  E 

,

E  P  A  S A  G 
E  C   P  A  i     ⋯ n
E  C  P 

  
(15)

As shown in Eq. (16), if the symmetric matrix 

S is multiplied by the nonsingular matrices L   
and L , we can obtain the matrix Q .

Q LSL                       (16)

where

L LLL ⋯ L,

L  











I    ⋯  
V  I   ⋯  
  I  ⋯  
   I ⋯  
⋮ ⋮⋮⋮⋱⋮⋮
    ⋯ I 
    ⋯  I

,

L  











I    ⋯  
 I   ⋯  
 V  I  ⋯  
   I ⋯  
⋮ ⋮ ⋮⋮⋱⋮⋮
    ⋯ I 
    ⋯  I

,

L  











I    ⋯  
 I   ⋯  
  I  ⋯  
   I ⋯  
⋮⋮⋮⋮⋱ ⋮ ⋮
    ⋯ I 
    ⋯V  I

,

Q  











G     ⋯  

 G    ⋯  

  G   ⋯  

   G ⋯  
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
    ⋯G n 

    ⋯  Sn

,            (17)

the matrices I and  denote an identity matrix 

and a zero matrix, respectively, and the matrix V   
in the matrix L   is equal to Eq. (8).

Because S and Q  are congruent, S and Q  
have the same inertia, which means the numbers 

of positive, zero, and negative eigenvalues of a 

matrix, from Sylvester’s inertia theorem6). The 

eigenvalues of the matrix Q  are equal to those 

that gather all eigenvalues of the matrices G , 
G , …, G , and S, because the matrix Q  is 

the block diagonal matrix. Thus, the total numbers 
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of positive, zero, and negative eigenvalues of the 

matrices G , G , …, G , and S are equal to 

those of the system dynamic stiffness matrix S .
If   is the searching eigenvalue, which is an 

assumed value for the eigenvalue , the total 

number of negative eigenvalues of the matrices 

G  , G  , …, G  , and S  is equal 

to the number of the eigenvalues that are smaller 

than . When the searching eigenvalue  is the 

square of , the total number of negative 

eigenvalues of the matrices G  , G  , …, 

G  , and S  is equal to that of the 

natural circular frequencies that are smaller than 

. While the Sylvester-transfer stiffness coefficient 

method computes the nodal dynamic stiffness 

coefficient matrices successively from node 1 to 

node n+1 by the transmission rules shown in 

Section 2.2, the natural frequencies are computed 

by searching the change of the value in the 

following function,

 




G  S ,       (18)

where the function A
 

determines the number 

of negative eigenvalues of the matrix A, and  is 

the searching eigenvalue and the square of the 

searching frequency . From the bisection 

method10) and Eq. (18), the Sylvester-transfer 

stiffness coefficient method can always find all the 

natural frequencies in searching region, regardless 

of the initial frequency interval.

3. Numerical results

Computer programs for the free vibration 

analysis of the axisymmetric conical shells were 

created using the Sturm sequence method (SSM)12) 

introducing the bisection method, the finite 

element-transfer matrix method (FE-TMM)14), the 

finite element-transfer stiffness coefficient method 

(FE-TSCM)8), and the Sylvester-transfer stiffness 

coefficient method (S-TSCM). To verify the 

effectiveness of S-TSCM, numerical results 

obtained with S-TSCM were compared with those 

obtained by SSM, FE-TMM, FE-TSCM and Irie’s 

method3), when analyzing the free vibration of two 

computational models, a truncated conical shell 

and a complete conical shell, on a personal 

computer (Intel Core i7-3770 CPU@3.40GHz, 3.48 

GB RAM).

In Tables, numbers in parentheses indicate the 

number of truncated conical shell elements used in 

the modeling process. For example, (50) in Table 

means that a conical shell consists of 50 truncated 

conical shell elements. In tables, a dash means 

that the natural frequency could not be found. In 

tables, n and m are a circumferential wave 

number and the order of natural frequency, 

respectively.

3.1 Truncated conical shell

As shown in Fig. 3, the first computation 

model (computation model I) is a truncated 

conical shell with constant thickness. The length 

and thickness of the truncated conical shell are 

1.5 m and 1.732 cm, the semi-vertex angle is 60°, 

and the radii of the left and right ends are 

0.433 m and 1.732 m, respectively. The physical 

parameters of the truncated conical shell are: mass 

density 7850 kg/m3, Young’s modulus 200 GPa, 

and Poisson’s ratio 0.3.

When the truncated conical shell was divided 

into 5, 10, and 50 truncated conical shell 

elements, the natural frequencies were computed 

by SSM, FE-TMM, FE-TSCM, and STSCM. When 

the initial frequency interval, Δf, for finding 

natural frequencies was 1 Hz in the four methods, 

Table 1 shows the first natural frequencies of 
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Fig. 3 Computational model I

Table 1 First natural frequencies [Hz] of computational 

model I (Δf = 1 Hz)

n m

SSM
FE-TMM
FE-TSCM
S-TSCM

(5)

SSM
FE-TMM
FE-TSCM
S-TSCM

(10)

SSM
FE-TMM
FE-TSCM
S-TSCM

(50)

Irie’s
method

0 1 326.3 325.2 324.8 324.8

1 1 295.9 294.7 294.3 294.3

2 1 228.9 226.9 226.3 226.4

3 1 179.2 176.4 175.6 175.7

computational model I under four circumferential 

wave numbers (n = 0, 1, 2, 3). Natural 

frequencies obtained by S-TSCM coincided with 

those obtained by SSM, FE-TMM, and FE-TSCM. 

Natural frequencies obtained by the four methods 

were similar to those obtained by Irie’s method3). 

In particular, when the truncated conical shell was 

divided into many elements, the natural 

frequencies of the four methods approached those 

of Irie’s method. The reason is that the four 

methods use discrete systems in modeling, whereas 

Irie’s method uses a continuous system.

When the initial frequency interval was 1 Hz, 

10 Hz, and 100 Hz, the lowest five natural 

frequencies under four circumferential wave 

numbers (n = 0, 1, 2, 3) were computed by SSM, 

FE-TMM, FE-TSCM, and S-TSCM. When the 

truncated conical shell was divided into 50 

Table 2 Lowest five natural frequencies [Hz] of 

computational model I

n m

SSM
FE-TMM
FE-TSCM
S-TSCM

(50)

SSM
FE-TMM
FE-TSCM
S-TSCM

(50)

FE-TMM
FE-TSCM

(50)

SSM

S-TSCM
(50)

Δf=1Hz Δf=10Hz Δf=100Hz Δf=100Hz

0

1

2

3

4

5

324.8

387.8

479.1

581.9

721.4

324.8

387.8

479.1

581.9

721.4

—

—

479.1

581.9

721.4

324.8

387.8

479.1

581.9

721.4

1

1

2

3

4

5

294.3

364.3

456.2

569.5

714.9

294.3

364.3

456.2

569.5

714.9

294.3

364.3

456.2

569.5

714.9

294.3

364.3

456.2

569.5

714.9

2

1

2

3

4

5

226.3

329.1

425.4

550.1

706.6

226.3

329.1

425.4

550.1

706.6

226.3

―

―

550.1

706.6

226.3

329.1

425.4

550.1

706.6

3

1

2

3

4

5

175.6

293.5

403.5

538.7

706.2

175.6

293.5

403.5

538.7

706.2

175.6

293.5

403.5

538.7

706.2

175.6

293.5

403.5

538.7

706.2

truncated conical shell elements, Table 2 shows 

the lowest five natural frequencies of computational 

model I under four circumferential wave numbers 

(n = 0, 1, 2, 3) by the four programs. When the 

initial frequency intervals were 1 Hz and 10 Hz, 

the lowest five natural frequencies computed by 

SSM, FE-TMM, and FE-TSCM coincided with 

those computed by S-TSCM. When the initial 

frequency interval was 100 Hz, SSM and S-TSCM 

found the lowest five natural frequencies. 

However, FE-TMM(50) and FE-TSCM(50) could 

not find several natural frequencies when the 

circumferential wave numbers were 0 and 2.
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Table 3 Results of Eq. (11) and Eq. (18) for 

computational model I (Δf = 100 Hz)

Searching
frequency [Hz]

FE-TSCM
(50)

S-TSCM
(50)

0 + 0

100 + 0

200 + 0

300 + 0

400 + 2

500 - 3

600 + 4

700 + 4

800 - 5

Table 4 Results of Eq. (11) and Eq. (18) for 

computational model I (Δf = 10 Hz)

Searching
frequency [Hz]

FE-TSCM
(50)

S-TSCM
(50)

300 + 0

310 + 0

320 + 0

330 - 1

340 - 1

350 - 1

360 - 1

370 - 1

380 - 1

390 + 2

400 + 2

  When the circumferential wave number was 0 

and the initial frequency interval was 100 Hz, 

Table 3 shows the results of Eq. (11) and Eq. 

(18). From Table 3, we know that FE-TSCM 

could not find the first and second natural 

frequencies (324.8 and 387.8 Hz), because the 

sign of the Eq. (11) at a frequency of 300 Hz is 

the same as the sign of the Eq. (11) at a 

frequency of 400 Hz. However, we confirmed that 

S-TSCM could find the two natural frequencies 

from Tables 3 and 4 although the initial frequency 

interval was 100 Hz.

Table 5 shows the computational time according 

to the initial frequency intervals for finding the 

lowest five natural frequencies under four 

circumferential wave numbers. From Table 5, we 

know that the computational time is reduced when 

the initial frequency interval is increased and 

S-TSCM is superior to SSM in terms of 

computational time.

We computed the natural modes of computation 

model I. The results of S-TSCM agreed well with 

those of other methods. Fig. 4 shows the first, 

second, and third natural modes of computation 

model I calculated by S-TSCM when the 

circumferential wave number was 0.

When computational model I is modeled as the 

50 truncated conical shell elements and the 

degrees-of-freedom of each node is four, the total 

degrees-of-freedom of the system is 204. The sizes 

of the system dynamic stiffness coefficient matrix 

of SSM and the nodal dynamic stiffness 

coefficient matrix of S-TSCM are 204 × 204 and 

4 × 4, respectively. Therefore, we know that 

S-TSCM is superior to SSM in terms of the 

management of computation memory, because 

S-TSCM uses the transfer technique.

Table 5 Computational time [s] of computational 

model I according to initial frequency 

interval

Initial 
frequency 
interval
(Δf)

SSM
(50)

FE-TMM
(50)

FE-TSCM
(50)

S-TSCM
(50)

1 Hz 87.14 15.57 12.76 12.74

10 Hz 17.14 3.09 2.52 2.51

100 Hz 11.85 2.19 1.77 1.74
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 (a) n=0, m=1

(b) n =0, m=2

(c) n=0, m=3

Fig. 4 Natural modes of computational model I

3.2 Perfect conical shell

The computation model II is a perfect conical 

shell with constant thickness (Fig. 5). The length 

and thickness of the conical shell are 2 m and 1 

cm, the semi-vertex angle is 30°, and the radius 

of the right end is 1 m. The physical parameters 

coincide with those in computational model I.

When the perfect conical shell was divided into 

5, 10, and 50 axisymmetric truncated conical shell 

elements, the natural frequencies were computed 

by SSM, FE-TMM, FETSCM, and S-TSCM. When 

the initial frequency interval was 1 Hz, Table 6 

shows the first natural frequencies under five 

circumferential wave numbers (n = 0, 1, 2, 3, 4). 

The natural frequencies obtained by S-TSCM 

coincided with those obtained by SSM and 

FE-TSCM. There were some problems in 

FE-TMM. When the circumferential wave number

Fig. 5 Computational model II

Table 6 First natural frequencies [Hz] of 

computational model II (Δf = 1 Hz)

n m

SSM
FE-TMM
FE-TSCM
S-TSCM

(5)

SSM

FE-TSCM
S-TSCM

(10)

FE-TMM

(10)

SSM
      

FE-TSCM
S-TSCM

(50)

0 1 837.1 811.1 811.3 805.7

1 1 509.5 507.2 508.8 506.7

2 1 311.6 301.9 301.2 291.6

3 1 252.5 229.2 226.7 223.9

4 1 231.8 216.5 — 211.7
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Table 7 Lowest five natural frequencies [Hz] of 

computational model II

n m

SSM
FE-TSCM
S-TSCM

(50)

SSM
FE-TSCM
S-TSCM

(50)

FE-TSCM

(50)

SSM

S-TSCM
(50)

Δf = 1 Hz Δf = 10 Hz Δf = 100HzΔf = 100Hz

0

1

2

3

4

5

805.7

896.5

915.5

954.6

1023

805.7

896.5

915.5

954.6

1023

―

―

―

―

1023

805.7

896.5

915.5

954.6

1023

1

1

2

3

4

5

506.7

722.3

814.1

915.0

1017

506.7

722.3

814.1

915.0

1017

506.7

722.3

814.1

915.0

1017

506.7

722.3

814.1

915.0

1017

2

1

2

3

4

5

291.6

514.8

717.6

833.5

939.1

291.6

514.8

717.6

833.5

939.1

291.6

514.8

717.6

833.5

939.1

291.6

514.8

717.6

833.5

939.1

3

1

2

3

4

5

223.9

410.8

602.2

747.3

864.4

223.9

410.8

602.2

747.3

864.4

223.9

410.8

602.2

747.3

864.4

223.9

410.8

602.2

747.3

864.4

4

1

2

3

4

5

211.7

375.2

546.5

695.1

824.1

211.7

375.2

546.5

695.1

824.1

211.7

375.2

546.5

695.1

824.1

211.7

375.2

546.5

695.1

824.1

Table 8 Computational time [s] of computational 

model II according to initial frequency 

interval (Δf)

Δf SSM
(50)

FE-TSCM
(50)

S-TSCM
(50)

1 Hz 140.18 20.52 20.57

10 Hz 24.42 3.55 3.58

100 Hz 15.01 2.20 2.20

was four, the first natural frequency could not be 

found by FE-TMM(10). FE-TMM(50) produced 

numerically unstable and meaningless results.

When the initial frequency intervals were 1 Hz, 

10 Hz, and 100 Hz, the lowest five natural 

frequencies under five circumferential wave 

numbers (n = 0, 1, 2, 3, 4) were computed by 

SSM, FE-TSCM, and S-TSCM. When the perfect 

conical shell was divided into 50 truncated conical 

shell elements, Table 7 shows the lowest five 

natural frequencies of computational model II 

computed by the three methods. When the initial 

frequency intervals were 1 Hz and 10 Hz, the 

lowest five natural frequencies computed by SSM 

and FE-TSCM coincided with those computed by 

S-TSCM. When the initial frequency interval was 

100 Hz, SSM and S-TSCM could find the lowest 

five natural frequencies. However, FE-TSCM could 

not find four natural frequencies (805.7, 896.5, 

915.5, and 954.6 Hz) when the circumferential 

wave number was 0.

Table 8 shows the computational time according 

to the initial frequency intervals for finding the 

lowest five natural frequencies under five 

circumferential wave numbers. From Table 8, we 

can see that the computational time was reduced 

when the initial frequency interval was increased 

and S-TSCM was superior to SSM in terms of 

computational time. Thus, we can confirm that 

S-TSCM is stable and fast in finding the natural 

frequencies because it is possible to set a large 

value for the initial frequency interval when 

finding natural frequencies.

We computed the natural modes of 

computational model II. The results of S-TSCM 

agreed well with those of other methods. Fig. 6 

shows the first, second, and third natural modes of 

computational model II calculated by S-TSCM 

when the circumferential wave number is zero.
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(a) n=0, m=1

(b) n=0, m=2

(c) n=0, m=3

Fig. 6 Natural modes of computational model II

4. Conclusions

In this paper, an algorithm for the free 

vibration analysis of axisymmetric conical shells 

was formulated with the Sylvester-transfer stiffness 

coefficient method.

The computation results of the free vibration 

analysis for the truncated conical shell and the 

perfect conical shell by the Sylvester-transfer 

stiffness coefficient method were compared with 

those obtained by the Sturm sequence method, the 

finite element-transfer matrix method, the finite 

element-transfer stiffness coefficient method, and 

so forth.

We confirmed that the finite element-transfer 

matrix method and the finite element-transfer 

stiffness coefficient method may omit some natural 

frequencies according to the initial frequency interval, 

when analyzing free vibration of axisymmetric 

conical shells. On the other hand, the Sylvester 

-transfer stiffness coefficient method can find 

stably and conveniently all natural frequencies in 

the searching frequency region. In terms of 

computational time and memory, the Sylvester 

-transfer stiffness coefficient method was superior 

to the Sturm sequence method.
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