• 제목/요약/키워드: nanorods

검색결과 360건 처리시간 0.021초

전기도금법을 이용한 태양전지용 CdSe 나노로드 제작 (Electrochemical Deposition of CdSe Nanorods for Photovoltaic Cell)

  • 김성훈;이재호
    • 한국표면공학회지
    • /
    • 제42권2호
    • /
    • pp.63-67
    • /
    • 2009
  • CdSe is one of the composite semiconductor materials used in hybrid solar cell. CdSe nanorods were fabricated using electrochemical deposition in anodic aluminum oxide (AAO) template. CdSe were deposited from $CdSO_4$ and $H_2SeO_3$ dissolved aqueous solution by direct current electrochemical deposition. Uniformity of CdSe nanorods were dependent on the diameter and the height of holes in AAO. The current density, current mode, bath composition and temperature were controlled to obtained 1:1 atomic composition of CdSe. CdSe electroplating in AAO is bottom-up filling so we applied direct current is better than others for good uniformity of CdSe nanorods. The optimum conditions to obtain 1:1 atomic composition of CdSe nanorods are direct current $10\;mA/cm^2$, 0.25 M $CdSO_4$-5 mM $H_2SeO_3$ electrolytes at room temperature.

Effect of Al Doping on the Properties of ZnO Nanorods Synthesized by Hydrothermal Growth for Gas Sensor Applications

  • Srivastava, Vibha;Babu, Eadi Sunil;Hong, Soon-Ku
    • 한국재료학회지
    • /
    • 제30권8호
    • /
    • pp.399-405
    • /
    • 2020
  • In the present investigation we show the effect of Al doping on the length, size, shape, morphology, and sensing property of ZnO nanorods. Effect of Al doping ultimately leads to tuning of electrical and optical properties of ZnO nanorods. Undoped and Al-doped well aligned ZnO nanorods are grown on sputtered ZnO/SiO2/Si (100) pre-grown seed layer substrates by hydrothermal method. The molar ratio of dopant (aluminium nitrate) in the solution, [Al/Zn], is varied from 0.1 % to 3 %. To extract structural and microstructural information we employ field emission scanning electron microscopy and X-ray diffraction techniques. The prepared ZnO nanorods show preferred orientation of ZnO <0001> and are well aligned vertically. The effects of Al doping on the electrical and optical properties are observed by Hall measurement and photoluminescence spectroscopy, respectively, at room temperature. We observe that the diameter and resistivity of the nanorods reach their lowest levels, the carrier concentration becomes high, and emission peak tends to approach the band edge emission of ZnO around 0.5% of Al doping. Sensing behavior of the grown ZnO nanorod samples is tested for H2 gas. The 0.5 mol% Al-doped sample shows highest sensitivity values of ~ 60 % at 250 ℃ and ~ 50 % at 220 ℃.

Post-Annealing Effects on Properties of ZnO Nanorods Grown on Au Seed Layers

  • Cho, Min-Young;Kim, Min-Su;Choi, Hyun-Young;Yim, Kwang-Gug;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.880-884
    • /
    • 2011
  • ZnO nanorods were grown by hydrothermal method. Two kinds of seed layers, Au film and island seed layers were prepared to investigate the effect of seed layer on ZnO nanorods. The ZnO nanorod on Au island seed layer has more unifom diameter and higher density compared to that of ZnO nanorod on Au film seed layer. The ZnO nanorods on Au island seed layer were annealed at various temperatures ranging from 300 to $850^{\circ}C$. The pinholes at the surface of the ZnO nanorods is formed as the annealing temperature is increased. It is noted that the pyramid structure on the surface of ZnO nanorod is observed at $850^{\circ}C$. The intensity of ZnO (002) diffraction peak in X-ray diffraction pattern and intensity of near band edge emission (NBE) peak in photoluminescence (PL) are increased as the ZnO nanorods were annealed at the temperature of $300^{\circ}C$.

Effect of SiC Nanorods on Mechanical and Thermal Properties of SiC Composites Fabricated by Chemical Vapor Infiltration

  • Lee, Ho Wook;Kim, Daejong;Lee, Hyeon-Geun;Kim, Weon-Ju;Yoon, Soon Gil;Park, Ji Yeon
    • 한국세라믹학회지
    • /
    • 제56권5호
    • /
    • pp.453-460
    • /
    • 2019
  • To reduce residual pores of composites and obtain a dense matrix, SiCf/SiC composites were fabricated by chemical vapor deposition (CVI) using SiC nanorods. SiC nanorods were uniformly grown in the thickness direction of the composite preform when the reaction pressure was maintained at 50 torr or 100 torr at 1,100℃. When SiC nanorods were grown, the densities of the composites were 2.57 ~ 2.65 g/㎤, higher than that of the composite density of 2.47 g/㎤ for non-growing of SiC nanorods under the same conditions; grown nanorods had uniform microstructure with reduced large pores between bundles. The flexural strength, fracture toughness and thermal conductivity (room temperature) of the SiC nanorod grown composites were 412 ~ 432 MPa, 13.79 ~ 14.94 MPa·m1/2 and 11.51 ~11.89 W/m·K, which were increases of 30%, 25%, and 25% compared to the untreated composite, respectively.

Cobalt ferrite nanotubes and porous nanorods for dye removal

  • Girgis, E.;Adel, D.;Tharwat, C.;Attallah, O.;Rao, K.V.
    • Advances in nano research
    • /
    • 제3권2호
    • /
    • pp.111-121
    • /
    • 2015
  • $CoFe_2O_4$ nanotubes and porous nanorods were prepared via a simple one-pot template-free hydrothermal method and were used as an adsorbent for the removal of dye contaminants from water. The properties of the synthesized nanotubes and porous nanorods were characterized by electron diffraction, transmission electron microscopy and x-ray powder diffraction. The Adsorption characteristics of the $CoFe_2O_4$ were examined using polar red dye and the factors affecting adsorption, such as, initial dye concentration, pH and contact time were evaluated. The overall trend followed an increase of the sorption capacity reaching a maximum of 95% dye removal at low pHs of 2-4. An enhancement in the removal efficiency was also noticed upon increasing the contact time between dye molecules and $CoFe_2O_4$ nanoparticles. The final results indicated that the $CoFe_2O_4$ nanotubes and porous nanorods can be considered as an efficient low cost and recyclable adsorbent for dye removal with efficiency 94% for Cobalt ferrite nanotubes and for Cobalt ferrite porous nanorods equals 95%.

Hydrothermal Growth and Characteristics of ZnO Nanorods on R-plane Sapphire Substrates

  • 김민수;김소아람;남기웅;박형길;윤현식;임재영
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 춘계학술발표회 논문집
    • /
    • pp.236-237
    • /
    • 2012
  • ZnO nanorods were grown on R-plane sapphire substrates with the seed layers annealed at different temperature. The effects of annealing temperature for the seed layers on the properties of the ZnO nanorods were investigated by scanning electron microscopy, X-ray diffraction, UV-visible spectroscopy, and photoluminescence. For the as-prepared seed layers, the ZnO nanorods and the ZnO nanosheets were observed. Only the ZnO nanorods were grown as the annealing temperature was above $700^{\circ}C$. The optical transmittance in the UV region was almost zero while that in the visible region was gradually increased as the annealing temperature increased to $700^{\circ}C$. The optical band gap of the ZnO nanorods was increased as the annealing temperature increased to $700^{\circ}C$. In the visible region, the refractive index was decreased with increasing the wavelength, and the extinction coefficient was decreased as the annealing temperature increased to $700^{\circ}C$. The non-linear exciton radiative life time of the FX emission peak was established by cubic equation. The values of Varshni's empirical equation fitting parameters were ${\alpha}=4{\times}10^{-3}eV/K$, ${\beta}=1{\times}10^4K$, and $E_g(0)=3.335eV$ and the activation energy was found to be about 94.6 meV.

  • PDF

전착 시간에 따른 ZnO 나노막대의 미세조직 변화와 광학적 성질 (Microstructural Evolution and Optical Properties of Electrodeposited ZnO Nanorods with Deposition Time)

  • 정윤숙;문진영;김형훈;이호성
    • 대한금속재료학회지
    • /
    • 제49권5호
    • /
    • pp.406-410
    • /
    • 2011
  • ZnO nanorods were prepared by the electrodeposition route on conductive Au/Si substrates. The effects of deposition time on the microstructural evolution and optical properties of ZnO nanorods were investigated. With increasing deposition time from 1 h to 20 h, the diameter and length of the ZnO nanorods increased gradually to about 328 nm and 6.55${\mu}m$, respectively. The ZnO nanorods were dense and vertically well-aligned. The photoluminescence (PL) peaks corresponding to the near band edge of ZnO were observed. With increasing deposition time, the intensity of PL peaks increased with nanorod growth up to 4 h and then decreased. This might be due to the degradation of crystal quality caused by merging of nanorods.

Axial frequency analysis of axially functionally graded Love-Bishop nanorods using surface elasticity theory

  • Nazemnezhad, Reza;Shokrollahi, Hassan
    • Steel and Composite Structures
    • /
    • 제42권5호
    • /
    • pp.699-710
    • /
    • 2022
  • This work presents a comprehensive study on the surface energy effect on the axial frequency analyses of AFGM nanorods in cylindrical coordinates. The AFGM nanorods are considered to be thin, relatively thick, and thick. In thin nanorods, effects of the inertia of lateral motions and the shear stiffness are ignored; in relatively thick nanorods, only the first one is considered; and in thick nanorods, both of them are considered in the kinetic energy and the strain energy of the nanorod, respectively. The surface elasticity theory which includes three surface parameters called surface density, surface stress, and surface Lame constants, is implemented to consider the size effect. The power-law form is considered for variation of the material properties through the axial direction. Hamilton's principle is used to derive the governing equations and boundary conditions. Due to considering the surface stress, the governing equation and boundary condition become inhomogeneous. After homogenization of them using an appropriate change of variable, axial natural frequencies are calculated implementing harmonic differential quadrature (HDQ) method. Comprehensive results including effects of geometric parameters and various material properties are presented for a wide range of boundary condition types. It is believed that this study is a comprehensive one that can help posterities for design and manufacturing of nano-electro-mechanical systems.

리튬이온전지용 산화갈륨 (β-Ga2O3) 나노로드 (Nanorods) 음극 활물질의 물리적.전기화학적 특성 (Physical and Electrochemical Properties of Gallium Oxide (β-Ga2O3) Nanorods as an Anode Active Material for Lithium Ion Batteries)

  • 최영진;류호석;조규봉;조권구;류광선;김기원
    • 전기화학회지
    • /
    • 제12권2호
    • /
    • pp.189-195
    • /
    • 2009
  • 고순도의 $\beta-Ga_{2}O_{3}$ 나노로드(nanorods)가 니켈산화물 나노입자를 촉매로 사용하고 갈륨금속분말을 원료물질로 이용하여 화학기상증착법으로 합성되었다. 전계방출형 주사전자현미경을 이용하여 $\beta-Ga_{2}O_{3}$ 나노로드를 관찰한 결과, 평균직경은 약 160 nm 그리고 평균길이는 $4{\mu}m$였으며 vaporsolid(VS) 성장기구를 통하여 성장되었음을 알 수 있었다. X-선 회절시험과 고분해능 투과전자 현미경을 이용한 결정구조 분석 결과, 합성된 나노로드의 내부는 단사정계 결정구조를 가지는 단결정의 $\beta-Ga_{2}O_{3}$로 이루어져 있고 외벽은 비정질 갈륨옥사이드로 이루어진 코어-셀 구조로 구성되어 있는 것을 확인하였다. 합성된 $\beta-Ga_{2}O_{3}$ 나노로드를 음극 활물질로 사용하여 전극을 제조하고 전기화학적 특성을 분석한 결과, 리튬/$\beta-Ga_{2}O_{3}$ 나노로드 전지는 첫 방전 시 867 mAh/g-$\beta-Ga_{2}O_{3}$의 높은 용량을 나타내었으나 초기 비가역 용량으로 인해 62%의 낮은 충 방전 효율을 나타내었다. 그러나 5 사이클 이후 높은 충 방전 효율을 보이며 30 사이클까지 안정된 사이클 특성을 나타내었다.

전기도금법을 이용한 태양전지용 CdSe 나노로드 제작 (Electrochemical Deposition of CdSe Nanorods for Photovoltaic Cell Applications)

  • 지창욱;김성훈;이재호;김양도
    • 한국재료학회지
    • /
    • 제19권11호
    • /
    • pp.596-600
    • /
    • 2009
  • Electrochemical deposition characteristics of CdSe nanorods were investigated for hybrid solar cell applications. CdSe nanorods were fabricated by electrochemical method in $CdSO_4$ and $H_2SeO_3$ dissolved aqueous solution using an anodic aluminum oxide (AAO) template. Uniformity of CdSe nanorods was dependent on the diameter and the height of holes in AAO. The current density, current mode, bath composition and temperature were controlled to obtain a 1:1 atomic composition of CdSe. CdSe nanorods deposited by direct-current method showed better uniformity compared to those deposited by purse-current and/or purse-reverse current methods due to the bottom-up filling characteristics. $H_2SeO_3$ concentration showed more significant effects on pH of solution and stoichiometry of deposits compared to that of $CdSO_4$. A 1:1 stoichiometry of uniform CdSe nanorods was obtained from 0.25M $CdSO_4-5$ mM $H_2SeO_3$ electrolytes with a direct current of 10 $mA/cm^2$ at room temperature. X-ray diffraction and electron diffraction pattern investigations demonstrate that CdSe nanorods are a uniform cubic CdSe crystal.