DOI QR코드

DOI QR Code

Electrochemical Deposition of CdSe Nanorods for Photovoltaic Cell Applications

전기도금법을 이용한 태양전지용 CdSe 나노로드 제작

  • Ji, Chang-Wook (School of Materials Science and Engineering, Pusan National University) ;
  • Kim, Seong-Hun (Department of Material Science and Engineering, Hongik University) ;
  • Lee, Jae-Ho (Department of Material Science and Engineering, Hongik University) ;
  • Kim, Yang-Do (School of Materials Science and Engineering, Pusan National University)
  • Published : 2009.11.27

Abstract

Electrochemical deposition characteristics of CdSe nanorods were investigated for hybrid solar cell applications. CdSe nanorods were fabricated by electrochemical method in $CdSO_4$ and $H_2SeO_3$ dissolved aqueous solution using an anodic aluminum oxide (AAO) template. Uniformity of CdSe nanorods was dependent on the diameter and the height of holes in AAO. The current density, current mode, bath composition and temperature were controlled to obtain a 1:1 atomic composition of CdSe. CdSe nanorods deposited by direct-current method showed better uniformity compared to those deposited by purse-current and/or purse-reverse current methods due to the bottom-up filling characteristics. $H_2SeO_3$ concentration showed more significant effects on pH of solution and stoichiometry of deposits compared to that of $CdSO_4$. A 1:1 stoichiometry of uniform CdSe nanorods was obtained from 0.25M $CdSO_4-5$ mM $H_2SeO_3$ electrolytes with a direct current of 10 $mA/cm^2$ at room temperature. X-ray diffraction and electron diffraction pattern investigations demonstrate that CdSe nanorods are a uniform cubic CdSe crystal.

Keywords

References

  1. L. Xi, Y. M. Lam, Y. P. Xu and L. J. Li, J. Colloid Interface Sci., 320, 491 (2008) https://doi.org/10.1016/j.jcis.2008.01.048
  2. S. M. Rashwan, S. M. Abd El-Wahab and M. M. Mohamed, J. Mater. Sci: Mater. Electron., 18, 575 (2007) https://doi.org/10.1007/s10854-007-9141-8
  3. V. P. Makhniy, M. V. Demych, M. M. Slyotov, P. P. Horley, V. V. Gorley, Y. V. Vorobiev and J. G.-Herna´ndez, Thin Solid Films, 495, 372 (2006) https://doi.org/10.1016/j.tsf.2005.08.239
  4. M. K. Mathe, S. M. Cox, B. H. Flowers Jr., R. Vaidyanathan, L. Pham, N. Srisook, U. Happek and J. L. Stickney, J. Cryst. Growth, 271, 55 (2004) https://doi.org/10.1016/j.jcrysgro.2004.07.022
  5. S. S. Kale and C. D. Lokhande, Mater. Chem. Phys., 62, 103 (2000) https://doi.org/10.1016/S0254-0584(99)00139-X
  6. S. M. Pawar, A. V. Moholkar and C. H. Bhosale, Mater. Lett., 61, 1034 (2007) https://doi.org/10.1016/j.matlet.2006.06.044
  7. M. Dhanam, R. R. Prabhu and P. K. Manoj, Mater. Chem. Phys., 107, 289 (2008) https://doi.org/10.1016/j.matchemphys.2007.07.011
  8. M. LaW, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nat. Mater., 4, 455 (2005) https://doi.org/10.1038/nmat1387
  9. A. Zahariev, I. Kanazirski and A. Girginov, Inorg. Chim. Acta, 361, 1789 (2008) https://doi.org/10.1016/j.ica.2007.03.040
  10. X. Zhao, S. K. Seo, U. J. Lee and K. H. Lee, J. Electrochem. Soc., 154, C553 (2007) https://doi.org/10.1149/1.2759780
  11. X. Wang and G. R. Han, Microelec. Eng., 66, 166 (2003) https://doi.org/10.1016/S0167-9317(03)00042-X
  12. M. H. Seo, M. S. Kong, H. S. Hong, J.-W. Sun, K.-O. Kong and K. M. Kang, Kor. J. Mater. Res., 19(3), 151 (2009) https://doi.org/10.3740/MRSK.2009.19.3.151