DOI QR코드

DOI QR Code

Computational and Experimental Study of Grain Growth in WC-Co and WC-VC-Co Cemented Carbides

  • Shin, Soon-Gi (Division of Advanced Materials and Chemical Engineering, Kangwon National University)
  • Published : 2009.11.27

Abstract

The knowledge of grain growth of carbide particles is very important for manufacturing micrograined cemented carbides. In the present study, continuous and discontinuous grain growth in WC-Co and WC-VC-Co cemented carbides is investigated using the Monte Carlo computer simulation technique. The Ostwald ripening process (solution/re-precipitation) and the grain boundary migration process are assumed in the simulation as the grain growth mechanism. The effects of liquid phase fraction, grain boundary energy and implanted coarse grain are examined. At higher liquid phase content, mass transfer via solid/liquid interfaces plays a major role in grain growth. Growth rate of the implanted grain was higher than that of the matrix grains through solution/re-precipitation and coalescence with neighboring grains. The results of these simulations qualitatively agree with experimental ones and suggest that distribution of liquid phase and carbide particle/carbide grain boundary energy as well as contamination by coarse grain are important factors controlling discontinuous grain growth in WC-Co and WC-VC-Co cemented carbides. The contamination by coarse grains must by avoided in the manufacturing process of fine grain cemented carbides, especially with low Co.

Keywords

References

  1. H. Suzuki, Y. Fuke and K. Hayashi, J Jpn. Soc. Powder Powder. Metall., 19, 106 (1972) https://doi.org/10.2497/jjspm.19.106
  2. A. Bock, W. D. Schubert and B. Lux, Powder Met. Int., 24, 20 (1992)
  3. G. W. Greenwood, Acta Metall., 4, 243 (1956) https://doi.org/10.1016/0001-6160(56)90060-8
  4. I. M. Lifshitz and V. V. Slyozov, J. Phys. Chem. solids., 19, 35 (1961) https://doi.org/10.1016/0022-3697(61)90054-3
  5. C. Wagner, Z. Electrochem., 65, 581 (1961)
  6. S. Sarian and H. W. Weart, J. Appl. Phys., 37, 1675 (1966) https://doi.org/10.1063/1.1708583
  7. A. J. Ardell, Acta Metall., 20, 61 (1972) https://doi.org/10.1016/0001-6160(72)90114-9
  8. P. W. Voorhees and M. E. Glicksman, Metall. Trans. A, 15, 1081 (1984) https://doi.org/10.1007/BF02644701
  9. H. E. Exner, Science of Hard Materials, p.233, ed. R. F. Viswanadham, D. J. Rowcliffe and J. Gurland, Plenum press, New York (1983)
  10. R. Warren and M. B. Waldron, Powder Metall., 15, 166 (1972) https://doi.org/10.1179/pom.1972.15.30.005
  11. E. A. Almond and B. Roebuck, Int. J. Ref. Met. Hard Master., 6, 137 (1987)
  12. H. Matsubara, S. G. Shin and T. Sakuma, Trans. Jpn. Inst. Met., 32, 951 (1991)
  13. S. G. Shin and H. Matsubara, Sintering Technology, p.157, ed. R. M. German, G. L. Messing and R. G. Cornwell, Marcel Dekker, New York (1996)
  14. H. Matsubara, Computer Materials Science, 14, 125 (1999) https://doi.org/10.1016/S0927-0256(98)00084-6
  15. M. Tajika, H. Matsubara and W. Rafaniello, J. Ceram. Soc. Jpn., 105, 928 (1997) https://doi.org/10.2109/jcersj.105.928
  16. Y. Okamoto, N. Hirosaki and H. Matsubara, J. Ceram. Soc. Jpn., 107, 109 (1997)
  17. H. Matsubara and R. J. Brook, Ceramic Transactions, vol.71, p.403, ed. K. Koumoto. M. Sheppard and H. Matsubara, Westerville, OH, USA (1996)
  18. M. P. Anderson, D. J. Srolovitz, G. S. Great and P. S. Sahni, Acta Metall., 32, 783 (1984) https://doi.org/10.1016/0001-6160(84)90151-2
  19. G. S. Grest, D. J. Srolovitz and M. P. Anderson, Acta Metall., 33, 509 (1985) https://doi.org/10.1016/0001-6160(85)90093-8
  20. W. D. Schubert, A. Bock and B. Lux, Int. J. Ref. Met. Hard Mater., 13, 281 (1995) https://doi.org/10.1016/0263-4368(95)92674-9
  21. T. Suzuki, K. Shibuki and Y. Ikuhara, Philos. Mag. Lett., 71, 289 (1995) https://doi.org/10.1080/09500839508240523
  22. V. Jayaram and R. Sinclair, J. Am. Ceram. Soc., 66, 137 (1983) https://doi.org/10.1111/j.1151-2916.1983.tb10111.x
  23. J. Vicens, M. Benjdir, G. Nouet, A. Dubon and J. V. Laval, J. Mater. Sci., 29, 987 (1994) https://doi.org/10.1007/BF00351421
  24. A. Egami, M. Ehira and M. Machida, Proceedings of the 13th International Plansee seminar, vol. 3, ed. H. Bildstein, R. Eck, Plansee, AG, p.639 (1993)
  25. N. K. Sharma, I. D. Ward, H. L. Fraser and W. S. Williams, J. Am. Ceram. Soc., 63, 194 (1980) https://doi.org/10.1111/j.1151-2916.1980.tb10690.x
  26. S. G. Shin, Kor. J. Mat. Res., 10, 612 (2000)