DOI QR코드

DOI QR Code

Microstructural Evolution and Optical Properties of Electrodeposited ZnO Nanorods with Deposition Time

전착 시간에 따른 ZnO 나노막대의 미세조직 변화와 광학적 성질

  • Jeong, Yoon Suk (School of Materials Science and Engineering, Kyungpook National University) ;
  • Moon, Jin Young (School of Materials Science and Engineering, Kyungpook National University) ;
  • Kim, Hyunghoon (School of Materials Science and Engineering, Kyungpook National University) ;
  • Lee, Ho Seong (School of Materials Science and Engineering, Kyungpook National University)
  • 정윤숙 (경북대학교 신소재공학부) ;
  • 문진영 (경북대학교 신소재공학부) ;
  • 김형훈 (경북대학교 신소재공학부) ;
  • 이호성 (경북대학교 신소재공학부)
  • Received : 2011.01.10
  • Published : 2011.05.25

Abstract

ZnO nanorods were prepared by the electrodeposition route on conductive Au/Si substrates. The effects of deposition time on the microstructural evolution and optical properties of ZnO nanorods were investigated. With increasing deposition time from 1 h to 20 h, the diameter and length of the ZnO nanorods increased gradually to about 328 nm and 6.55${\mu}m$, respectively. The ZnO nanorods were dense and vertically well-aligned. The photoluminescence (PL) peaks corresponding to the near band edge of ZnO were observed. With increasing deposition time, the intensity of PL peaks increased with nanorod growth up to 4 h and then decreased. This might be due to the degradation of crystal quality caused by merging of nanorods.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. W. S. Han, Y. Y. Kim, B. H. Kong, H. K. Cho, J. Y. Moon, and H. S. Lee, Jpn. J. Appl. Phys. 48, 08HK03 (2009). https://doi.org/10.1143/JJAP.48.08HK03
  2. M. Willander, O. Nur, Q. X. Zhao, L. L. Yang, M. Lorenz, B. Q. Cao, J. Zuniga Perez. C. Czekalla, G. Zimmermann, M. Grundmann, A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H. S. Kwack, J. Guinard, and D. Le Si Dang, Nanotechnology 20, 332001 (2009). https://doi.org/10.1088/0957-4484/20/33/332001
  3. C. H. Ahn, Y. Y. Kim, S. W. Kang, B. H. Kong, S. K. Mohanta, H. K. Cho, J. H. Kim, and H. S. Lee, J. Mater. Sci.: Mater. Electron. 19, 744 (2008). https://doi.org/10.1007/s10854-007-9401-7
  4. M. Kim, Y. J. Hong, J. Yoo, G. -C. Yi, G. -S. Park, K. -J. Kong, and H. Chang, Phys. Stat. Sol. (RRL) 2, 197 (2008). https://doi.org/10.1002/pssr.200802084
  5. J. X. Wang, X. W. Sun, A. Wei, Y. Lei, X. P. Cai, C. M. Li, and Z. L. Dong, Appl. Phys. Lett. 88, 233106 (2006). https://doi.org/10.1063/1.2210078
  6. L. W. Ji, S. M. Peng, Y. K. Su. S. J. Young, C. Z. Wu, and W. B. Cheng, Appl. Phys. Lett. 94, 203106 (2009). https://doi.org/10.1063/1.3141447
  7. X. -M. Zhang, M. -Y. Lu, Y. Zhang, L. Chen, and Z. L. Wang, Adv. Mater. 21, 1 (2009)
  8. N. O. V. Plank, H. J. Snaith, C. Ducati, J. S. Bendall, L. Schmidt-Mende, and M. E. Welland, Nanotechnology 19, 465603 (2008). https://doi.org/10.1088/0957-4484/19/46/465603
  9. S. Chu, M. Olmedo, Z. Yang, J. Kong, and J. Liu, Appl. Phys. Lett. 93, 181106 (2008). https://doi.org/10.1063/1.3012579
  10. J. B. You, X. W. Zhang, S. G. Zhang, J. X. Wang, Z. G. Yin, H. R. Tan, W. J. Zhang, P. K. Chu, B. Cui, A. M. Wowchak, A. M. Dabiran, and P. P. Chow, Appl. Phys. Lett. 96, 201102 (2010). https://doi.org/10.1063/1.3430039
  11. L. Wang, G. Liu, L. Zou, and D. Xue, J. Alloys Compd. 493, 471 (2010). https://doi.org/10.1016/j.jallcom.2009.12.129
  12. J. Y. Moon, J. H. Kim, H. Kim, H. S. Lee, Y. Y. Kim, H. K. Cho, and H. S. Kim, Thin Solid Films 517, 3931 (2009). https://doi.org/10.1016/j.tsf.2009.01.103
  13. J. Y. Moon, H. S. Lee, Y. Y. Kim, H. K. Cho, and H. S. Kim, Thin Solid Films 518, 1230 (2009). https://doi.org/10.1016/j.tsf.2009.06.058
  14. G. Zhang, A. Nakamura, T. Aoki, J. Temmyo, and Y. Matsui, Appl. Phys. Lett. 89, 113112 (2006). https://doi.org/10.1063/1.2207832
  15. S. K. Mohanta, D. C. Kim, H. K. Cho, C. B. Soh, S. J. Chua, and S. Tripathy, Electrochem. Solid-State Lett. 11, H143 (2008). https://doi.org/10.1149/1.2898500
  16. I. Levin, A. Davydov, B. Nikoobakht, N. Sanford, and P. Mogilevsky, Appl. Phys. Lett. 87, 103110 (2005). https://doi.org/10.1063/1.2041832
  17. Y. Lee, Y. Zhang, S. L. G. Ng, F. C. Kartawidjaja, and J. Wang, J. Am. Ceram. Soc. 92, 1940 (2009). https://doi.org/10.1111/j.1551-2916.2009.03148.x
  18. F. Xu, Y. Lu, Y. Xie, and Y. Liu, Mater. Design 30, 1704 (2009). https://doi.org/10.1016/j.matdes.2008.07.024
  19. T. Pauporte, D. Lincot, B. Viana, and F. Pelle, Appl. Phys. Lett. 89, 233112 (2006). https://doi.org/10.1063/1.2402223
  20. G. W. She, X. H. Zhang, W. S. Shi, X. Fan, J. C. Chang, C. S. Lee, S. T. Lee, and C. H. Liu, Appl. Phys. Lett. 92, 053111 (2008). https://doi.org/10.1063/1.2842386
  21. H. Kim, J. Y. Moon, and H. S. Lee, Electron. Mater. Lett. 5, 135 (2009).
  22. J. D. Lee, C. Y. Park, H. S. Kim, J. J. Lee, and Y. -G. Choo, J. Phys. D: Appl. Phys. 43, 365403 (2010).
  23. B. Cao, X. Teng, S. H. Heo, Y. Li, S. O. Cho, G. Li, and W. Cai, J. Phys. Chem. C 111, 2470 (2007). https://doi.org/10.1021/jp066661l