DOI QR코드

DOI QR Code

Cobalt ferrite nanotubes and porous nanorods for dye removal

  • Girgis, E. (Solid State Physics Department, National Research Centre) ;
  • Adel, D. (Solid State Physics Department, National Research Centre) ;
  • Tharwat, C. (Solid State Physics Department, National Research Centre) ;
  • Attallah, O. (Solid State Physics Department, National Research Centre) ;
  • Rao, K.V. (Department of Materials Science, Royal Institute of Technology)
  • Received : 2015.07.27
  • Accepted : 2015.09.07
  • Published : 2015.06.25

Abstract

$CoFe_2O_4$ nanotubes and porous nanorods were prepared via a simple one-pot template-free hydrothermal method and were used as an adsorbent for the removal of dye contaminants from water. The properties of the synthesized nanotubes and porous nanorods were characterized by electron diffraction, transmission electron microscopy and x-ray powder diffraction. The Adsorption characteristics of the $CoFe_2O_4$ were examined using polar red dye and the factors affecting adsorption, such as, initial dye concentration, pH and contact time were evaluated. The overall trend followed an increase of the sorption capacity reaching a maximum of 95% dye removal at low pHs of 2-4. An enhancement in the removal efficiency was also noticed upon increasing the contact time between dye molecules and $CoFe_2O_4$ nanoparticles. The final results indicated that the $CoFe_2O_4$ nanotubes and porous nanorods can be considered as an efficient low cost and recyclable adsorbent for dye removal with efficiency 94% for Cobalt ferrite nanotubes and for Cobalt ferrite porous nanorods equals 95%.

Keywords

References

  1. Akutsu, J., Tojo, Y., Segawa, O., Obata, K., Okochi, M., Tajima, H. and Yohda, M. (2004), "Development of an integrated automation system with a magnetic bead-mediated nucleic acid purification device for genetic analysis and gene manipulation", Biotechnol. Bioeng., 86, 667-671. https://doi.org/10.1002/bit.20049
  2. Capar, G., Yetis, U. and Yilmaz, L. (2006), "Membrane based strategies for the pre-treatment of acid dye bath wastewaters", J. Hazard. Mater., 135, 423-430. https://doi.org/10.1016/j.jhazmat.2005.12.008
  3. Chen, H., Kaminski, M., Liu, X. and Torno, M. (2007), "A novel human detoxification system based on nanoscale bioengineering and magnetic separation techniques", Med. Hypotheses, 68, 1071-1079. https://doi.org/10.1016/j.mehy.2005.04.047
  4. De Lisi, R., Lazzara, G., Milioto, S. and Muratore, N. (2007), "Adsorption of a dye on clay and sand. use of cyclodextrins as solubility-enhancement agents", Chemosphere, 69, 1703-1712 . https://doi.org/10.1016/j.chemosphere.2007.06.008
  5. Dutta, K., Mukhopadhyaya, S., Bhattacharjee, S. and Chaudhuri, B. (2001), "Chemical oxidation of methylene blue using a Fenton-like reaction", J. Hazard. Mater., 84, 57-71. https://doi.org/10.1016/S0304-3894(01)00202-3
  6. El-Sayed, W., Nofal, R., & El-Sayed, H. (2009), "Use of lipoprotein lipase in the improvement of some properties of wool fabrics", Color Technol., 126, 296-302.
  7. Gharagozlou, M. J. (2009), Alloys Compd., 486, 660. https://doi.org/10.1016/j.jallcom.2009.07.025
  8. Guibal, E. and Roussy, J. (2007), "Coagulation and flocculation of dye-containing solutions using a biopolymer (Chitosan)", React. Funct. Polym. 67, 33-42. https://doi.org/10.1016/j.reactfunctpolym.2006.08.008
  9. Gong, R., Li, M., Yang, C., Sun, Y. and Chen, J. (2005), "Removal of cationic dyes from aqueous solution by adsorption on peanut hull", J. Hazard. Mater., 121, 247-250. https://doi.org/10.1016/j.jhazmat.2005.01.029
  10. Goya, G.F., Berquo, T.S. and Fonseca, F.C. (2003), "Fonseca FC and morales MP", J. Appl. Phys., 94, 3520. https://doi.org/10.1063/1.1599959
  11. Kornaros, M. and Lyberatos, G. (2006), "Biological treatment of wastewaters from a dye manufacturing company using a trickling filter", J. Hazard. Mater., 136, 95-102. https://doi.org/10.1016/j.jhazmat.2005.11.018
  12. Ligrini, O., Oliveros, E. and Braun, A. (1993), Chem. Rev., 93, 671. https://doi.org/10.1021/cr00018a003
  13. Liu, C.H., Wu, J.S., Chiu, H.C., Suen, S.Y. and Chu, K.H. (2007), "Removal of anionic reactive dyes from water using anion exchange membranes as adsorbers", Water Res., 41, 1491-1500. https://doi.org/10.1016/j.watres.2007.01.023
  14. Mahmoodi, N.M., Abdi, J. and Bastani, D. (2014), "Direct dyes removal using modified magnetic ferrite nanoparticle", J. Environ. Hlth. Sci. Eng., 12(1), 96. https://doi.org/10.1186/2052-336X-12-96
  15. Morstyn, G. and William, S. (1996), Cell Therapy: Stem Cell Transplantation, Gene Therapy, and Cellular Immunotherapy, Cambridge University Press, West Nyack, New York.
  16. Muruganandham, M. and Swaminathan, M. (2006), "$TiO_2$-UV photo catalytic oxidation of reactive yellow 14: effect of operational parameters", J. Hazard. Mater., 135, 78-86. https://doi.org/10.1016/j.jhazmat.2005.11.022
  17. Rocher, V., Siaugue, J.M., Cabuil, V. and Bee, A. (2008), "Removal of organic dyes by magnetic alginate beads", Water Res., 42, 1290-1298. https://doi.org/10.1016/j.watres.2007.09.024
  18. Sari, M., Akgol, S., Karatas, M. and Denizli, A. (2006), "Reversible immobilization of catalase by metal chelate affinity interaction on magnetic beads", Ind. Eng. Chem. Res., 45, 3036-3034. https://doi.org/10.1021/ie0507979
  19. Schartl, W. (2000), Adv. Mater., 12, 1899. https://doi.org/10.1002/1521-4095(200012)12:24<1899::AID-ADMA1899>3.0.CO;2-T
  20. Sharma, R.K., Suwalka, O., Lakshmi, N., Venugopalan, K., Banerjee, A. and Joy, P.A. (2006), J. Alloys Compd., 419, 155. https://doi.org/10.1016/j.jallcom.2005.05.055
  21. Wu, T.X., Lin, T., Zhao, J.C., Hidaka, H. and Serpone, N. (1999), "$TiO_2$-assisted photo degradation of dyes, 9. Photo oxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation", Environ. Sci. Technol., 33, 1379-1387. https://doi.org/10.1021/es980923i
  22. Vandevivere, P.C., Bianchi, R. and Verstraete, W. (1998), "Treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies", J. Chem. Technol. Biotechnol., 72, 289-302. https://doi.org/10.1002/(SICI)1097-4660(199808)72:4<289::AID-JCTB905>3.0.CO;2-#
  23. Varma, P.R., Manna, R.S., Banerjee, D., Varma, M.R., Suresh, K.G. and Nigam, A.K. (2008), "Magnetic properties of CoFe 2 O 4 synthesized by solid state, citrate precursor and polymerized complex methods: A comparative study", J. Alloy. Compound., 453(1), 298-303. https://doi.org/10.1016/j.jallcom.2006.11.058
  24. Vaskova, A., Kupka, D., Styriakova, I. and Cuvanova, S. (2006), "Priprava syntetickych oxihydroxidov zeleza", Acta Montanistica Slovaca, 11, 397.
  25. Virlan, C., Ciocarlan, R.G., Roman, T., Gherca, D., Cornei, N. and Pui, A. (2013), "Studies on adsorption capacity of cationic dyes on several magnetic nanoparticles", Acta Chemica Iasi, 21(1), 19-30.
  26. Zavisova, V., Tomasovicova, N., Kovac, J., Koneracka, M., Kopcansky, P. and Vavra, I. (2010), "Synthesis and characterization of rod like magnetic nanoparticles", J. Nano Con.
  27. Zhao, W., Wu, Z. and Wang, D. (2006), "Ozone direct oxidation kinetics of cationic red X-GRL in aqueous solution", J. Hazard. Mater., 137, 1859-1865. https://doi.org/10.1016/j.jhazmat.2006.05.032

Cited by

  1. Removal of malachite green (a toxic dye) from water by cobalt ferrite silica magnetic nanocomposite: Herbal and green sol-gel autocombustion synthesis vol.42, pp.39, 2017, https://doi.org/10.1016/j.ijhydene.2017.08.077
  2. Designing Magnetic Layered Double Hydroxides and Two-Dimensional Magnetic Nano-Nets of Cobalt Ferrite through a Novel Approach vol.8, pp.11, 2018, https://doi.org/10.3390/app8112099
  3. Design and synthesis of Zn0.3Fe0.45O3 nanoparticle for efficient removal of Congo red dye and its kinetic and isotherm investigation vol.9, pp.1, 2018, https://doi.org/10.1007/s40090-018-0140-9
  4. Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory vol.73, pp.3, 2020, https://doi.org/10.12989/sem.2020.73.3.225