• Title/Summary/Keyword: nanopowders

Search Result 176, Processing Time 0.025 seconds

Prepration and Properties of Blue Tungsten Oxide Nanopowders by High Energy Ball-Mill (고 에너지 볼밀을 이용한 Blue 텅스텐산화물 나노입자의 제조와 특성)

  • Kim, Myung-Jae;Lee, Kwang-Seok;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.23-28
    • /
    • 2021
  • The purpose of this study is to prepare WO3 nanopowders by high-energy milling in mixture gas (7 % H2+Ar) with various milling times (10, 30, and 60 min). The phase transformation, particle size and light absorption properties of WO3 nanopowders during reduction via high-energy milling are studied. It is found that the particle size of the WO3 decreases from about 30 ㎛ to 20 nm, and the grain size of WO3 decreases rapidly with increasing milling time. Furthermore, the surface of the particles due to the pulverization process is observed to change to an amorphous structure. UV/Vis spectrophotometry shows that WO3 powder with increasing milling times (10, 30, 60 min) effectively extends the light absorption properties to the visible region. WO3 powder changes from yellow to gray and can be seen as a phenomenon in which the progress of the color changes to blue. The characterization of WO3 is performed by high resolution X-ray diffractometry, Field emission scanning electron microscopy, Transmission electron microscopy, UV/Vis spectrophotometry and Particle size analysis.

Fabrication and Sintering Behavior Analysis of Molybdenum-tungsten Nanopowders by Pechini Process (페치니 공정을 이용한 몰리브덴-텅스텐 나노 분말 제조 및 소결 특성 평가)

  • Suyeon Kim;Taehyun Kwon;Seulgi Kim;Dongju Lee
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.436-441
    • /
    • 2023
  • Molybdenum-tungsten (Mo-W) alloy sputtering targets are widely utilized in fields like electronics, nanotechnology, sensors, and as gate electrodes for TFT-LCDs, owing to their superior properties such as high-temperature stability, low thermal expansion coefficient, electrical conductivity, and corrosion resistance. To achieve optimal performance in application, these targets' purity, relative density, and grain size of these targets must becarefully controlled. We utilized nanopowders, prepared via the Pechini method, to obtain uniform and fine powders, then carried out spark plasma sintering (SPS) to densify these powders. Our studies revealed that the sintered compacts made from these nanopowders exhibited outstanding features, such as a high relative density of more than 99%, consistent grain size of 3.43 ㎛, and shape, absence of preferred orientation.

Synthesis and Properties of Ni-CNT Nanocomposites Using Electrical Explosion of Wire in Different Conditions

  • Maithili Biswas; Jin-Chun Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.138-143
    • /
    • 2024
  • Ni-CNT nanocomposites were synthesized via the electrical explosion of wire (EEW) in acetone and deionized (DI) water liquid conditions with different CNT compositions. The change in the shape and properties of the Ni-CNT nanopowders were determined based on the type of fluids and CNT compositions. In every case, the Ni nanopowder had a spherical shape and the CNT powder had a tube shape. However, the Ni-CNT nanopowders obtained in DI water exhibited irregular shapes due to the oxidation of Ni. Phase analysis also revealed the existence of nickel oxide when using DI water, as well as some unknown peaks with acetone, which may form due to the metastable phase of Ni. Magnetic properties were investigated using a Vibrating Sample Magnetometer (VSM) for all cases. Nanopowders prepared in DI water conditions had better magnetic properties than those in acetone, as evidenced by the simultaneous formation of super paramagnetic NiO peaks and ferromagnetic Ni peaks. The DI water (Ni:CNT = 1:0.3) sample revealed better magnetic results than the DI water (Ni-CNT = 1:0.5) because it had less CNT contents.

Tungsten-Doped Titania Nanopowders - Their Chemical Vapor Synthesis and Photocatalytic Activity (텅스텐이 도핑된 티타니아 나노분말의 화학기상합성 및 광촉매 활성)

  • Park, Bo-In;Kang, Kae-Myung;Jie, Hyunseock;Song, Bong-Geun;Park, Jong-Ku;Cho, So-Hye
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.143-147
    • /
    • 2012
  • Photocatalytic properties of $TiO_2$ nanopowders has been received much attention due to their high potentials for environmental applications such as remediation of polluted environments. The $TiO_2$ nanopowders doped with metal or non-metal elements have been synthesized by variety methods such as flame method, chemical vapor synthesis, sol-gel, ion implantation, which affect a doping behavior in different ways resulting in different surface characteristics, leading to different photocatalytic activity. In addition to an effect of synthesis methods, the photocatalytic activity of $TiO_2$ nanopowders can be improved by subsequent heat-treatments. In this study, to obtain a highly efficient photocatalyst, we synthesized $TiO_2$ nanopowders doped with tungsten by the chemical vapor synthesis method (CVS) and determined their physical properties and photocatalytic activity, together with subsequent post-treatment in the range of $300^{\circ}C$ to $700^{\circ}C$.

The Effect of Composition on Hydrogen Reduction Behavior of Ball-milled WO3-CuO Nanocomposite Powders (볼밀링한 WO3-CuO 나노복합분말의 조성에 따른 수소환원 거동)

  • Jung Sung-Soo;Kang Yun-Sung;Lee Jai-Sung
    • Journal of Powder Materials
    • /
    • v.13 no.3 s.56
    • /
    • pp.205-210
    • /
    • 2006
  • The effect of Cu content on hydrogen reduction behavior of ball-milled $WO_3$-CuO nanocomposite powders was investigated. Hydrogen reduction behavior and reduction percent(${\alpha}$) of nanopowders were characterized by thermogravimetry (TG) and hygrometry measurements. Activation energy for hydrogen reduction of $WO_3$ nanopowders with different Cu content was calculated at each heating rate and reduction percent(${\alpha}$). The activation energy for reduction of $WO_3$ obtained in this study existed in the ranging from 129 to 139 kJ/mol, which was in accordance with the activation energy for $WO_3$ powder reduction of conventional micron-sized.

Synthesis and Compaction of Al-based Nanopowders by Pulsed Discharge Method

  • Rhee, Chang-Kyu;Lee, Geun-Hee;Kim, Whung-Whoe
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.433-440
    • /
    • 2002
  • Synthesis and compaction of Al-base nano powders by pulsed discharge method were investigated. The aluminum based powders with 50 to 200 nm of diameter were produced by pulsed wire evaporation method. The powders were covered with very thin oxide layer. The perspective process for the compaction and sintering of nanostructured metal-based materials stable in a wide temperature range can be seen in the densification of nano-sized metal powders with uniformly distributed hard ceramic particles. The promising approach lies in utilization of natural uniform mixtures of metal and ceramic phases, e.g. partially oxidized metal powders as fabricated in our synthesis method. Their particles consist of metal grains coated with oxide films. To construct a metal-matrix material from such powder, it is necessary to destroy the hard oxide coatings of particles during the compaction process. This goal was realized in our experiments with intensive magnetic pulsed compaction of aluminum nanopowders passivated in air.