DOI QR코드

DOI QR Code

Synthesis and Properties of Ni-CNT Nanocomposites Using Electrical Explosion of Wire in Different Conditions

  • Maithili Biswas (School of Materials Science and Engineering, University of Ulsan) ;
  • Jin-Chun Kim (School of Materials Science and Engineering, University of Ulsan)
  • Received : 2023.11.23
  • Accepted : 2024.03.06
  • Published : 2024.03.27

Abstract

Ni-CNT nanocomposites were synthesized via the electrical explosion of wire (EEW) in acetone and deionized (DI) water liquid conditions with different CNT compositions. The change in the shape and properties of the Ni-CNT nanopowders were determined based on the type of fluids and CNT compositions. In every case, the Ni nanopowder had a spherical shape and the CNT powder had a tube shape. However, the Ni-CNT nanopowders obtained in DI water exhibited irregular shapes due to the oxidation of Ni. Phase analysis also revealed the existence of nickel oxide when using DI water, as well as some unknown peaks with acetone, which may form due to the metastable phase of Ni. Magnetic properties were investigated using a Vibrating Sample Magnetometer (VSM) for all cases. Nanopowders prepared in DI water conditions had better magnetic properties than those in acetone, as evidenced by the simultaneous formation of super paramagnetic NiO peaks and ferromagnetic Ni peaks. The DI water (Ni:CNT = 1:0.3) sample revealed better magnetic results than the DI water (Ni-CNT = 1:0.5) because it had less CNT contents.

Keywords

Acknowledgement

This work was supported by the 2021 Research Fund of the University of Ulsan.

References

  1. A. Sharma, H. Nakagawa and K. Miura, Fuel, 85, 2396 (2006). 
  2. A. Sharma, I. Saito, H. Nakagawa and K. Miura, Fuel, 86, 915 (2007). 
  3. S. F. Wang, F. Xie and R. F. Hu, Sens. Actuators, B, 123, 495 (2007). 
  4. Q. S. Song, G. K. Aravindaraj, H. Sultana and S. L. I. Chan, Electrochim. Acta, 53, 1890 (2007). 
  5. L. Znak and J. Zielinski, Appl. Catal., A, 334, 268 (2008). 
  6. M. Zielinski, R. Wojcieszak, S. Monteverdi, M. Mercy and M. M. Bettahar, Int. J. Hydrogen Energy, 32, 1024 (2007). 
  7. Z. Y. Zhong, Z. T. Xiong, L. F. Sun, J. Z. Luo, P. Chen, X. Wu, J. Lin and K. L. Tan, J. Phys. Chem. B, 106, 9507 (2002). 
  8. C. T. Hsieh, Y. W. Chou and J. Y. Lin, Int. J. Hydrogen Energy, 32, 3457 (2007). 
  9. J. Skowronski, A. Czerwinski, T. Rozmanowski, Z. Rogulski and P. Krawczyk, Electrochim. Acta, 52, 5677 (2007). 
  10. B. Li, W. Dong, Y. Ren and A. Feng, Carbon, 45, 1219 (2007). 
  11. G. P. Jin, Y. F. Ding and P. P. Zheng, J. Power Sources, 166, 80 (2007). 
  12. C. Wang, J. Qiu, C. Liang, L. Xing and X. Yang, Catal. Commun., 9, 1749 (2008). 
  13. C. Bittencourt, A. Felten, J. Ghijsen, J. J. Pireaux, W. Drube, R. Erni and G. Van Tendeloo, Chem. Phys. Lett., 436, 368 (2007). 
  14. E. Park, H. W. Park and J. Lee, Colloids Surf., A, 482, 710 (2015). 
  15. C. Cho, Y.-C. Ha, C. Kang, Y.-S. Jin and G.-H. Rim, J. Korean Phys. Soc., 57, 1807 (2010). 
  16. B. Ghosh, H. Dutta and S. K. Pradhan, J. Alloys Compd., 479, 193 (2009). 
  17. M.-T. Nguyen, J. H. Kim and J. C. Kim, Arch. Metall. Mater., 63, 1453 (2018).