• Title/Summary/Keyword: nano-grain

Search Result 343, Processing Time 0.022 seconds

The Effect of Nitride Coating on SiC Platelet in $Al_2O_3/SiC$ Hybrid-Composite ($Al_2O_3/SiC$ Hybrid-Composite에서 SiC에 질화물 코팅의 영향)

  • 이수영;임경호;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.406-412
    • /
    • 1997
  • Al2O3/SiC hybrid-composite has been fabricated by the conventional powder process. The addition of $\alpha$-Al2O3 as seed particles in the transformation of ${\gamma}$-Al2O3 to $\alpha$-Al2O3 provided a homogeneity of the microstructure. The grain growth of Al2O3 are significantly surpressed by the addition of nano-size SiC particles. Dislocation were produced due to the difference of thermal expansion coefficient between Al2O3 and SiC and piled up on SiC particles in Al2O3 matrix, resulting in transgranular fracture. The high fracture strength of the composite was contributed to the grain refinement and the transgranular fracture mode. The addition of SiC platelets to Al2O3/SiC nano-composite decreased the fracture strength, but increased the fracture toughness. Coated SiC platelets with nitrides such as BN and Si3N4 enhanced fracture toughness much more than non-coated SiC platelets by enhancing crack deflection.

  • PDF

Multi-scale simulation of drying process for porous materials using molecular dynamics (part 2: material properties) (분자동역학을 이용한 다공성 물질 건조공정 멀티스케일 시뮬레이션(2부: 미시 물성))

  • Baik S.M.;Keum Y.T.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.4
    • /
    • pp.162-167
    • /
    • 2005
  • As the properties of porous materials during the drying process relate to the atomistic defects of heterogeneous materials such as dislocation, grain, grain boundary, pore, etc., the knowledge of nano-scale analysis is needed in order to accurately analyze the drying process for porous materials. In this study, the atomic behavior of porous materials Is statically predicted by using the molecular dynamics simulation and the nano-scale material properties are computed. The elastic modulus, thermal expansion coefficient, and volumetric heat capacity numerically found from the molecular dynamics simulation are compared with those of experiment and theory and proved the accuracy.

A Stacked Polusilicon Structure by Nitridation in N2 Atmosphere for Nano-scale CMOSFETs (나노 CMOS 소자 적용을 위한 질소 분위기에서 형성된 질화막을 이용한 폴리실리콘 적층 구조)

  • Ho, Won-Joon;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.11
    • /
    • pp.1001-1006
    • /
    • 2005
  • A new fabrication method is proposed to form the stacked polysilicon gate by nitridation in $N_2$ atmosphere using conventional LP-CVD system. Two step stacked layers with an amorphous layer on top of a polycrystalline layer as well as three step stacked layers with polycrystalline films were fabricated using the proposed method. SIMS profile showed that the proposed method would successfully create the nitrogen-rich layers between the stacked polysilicon layers, thus resulting in effective retardation of dopant diffusion. It was observed that the dopants in stacked films were piled-up at the interface. TEM image also showed clear distinction of stacked layers, their plane grain size and grain mismatch at interface layers. Therefore, the number of stacked polysilicon layers with different crystalline structures, interface position and crystal phase can be easily controlled to improve the device performance and reliability without any negative effects in nano-scale CMOSFETs.

Study of the Microstructural Evolution of Tempered Martensite Ferritic Steel T91 upon Ultrasonic Nanocrystalline Surface Modification

  • He, Yinsheng;Yang, Cheol-Woong;Lee, Je-Hyun;Shin, Keesam
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.170-176
    • /
    • 2015
  • In this work, various electron microscopy and analysis techniques were used to investigate the microstructural evolution of a 9% Cr tempered martensite ferritic (TMF) steel T91 upon ultrasonic nanocrystalline surface modification (UNSM) treatment. The micro-dimpled surface was analyzed by scanning electron microscopy. The characteristics of plastic deformation and gradient microstructure of the UNSM treated specimens were clearly revealed by crystal orientation mapping of electron backscatter diffraction (EBSD), with flexible use of the inverse pole figure, image quality, and grain boundary misorientation images. Transmission electron microscope (TEM) observation of the specimens at different depths showed the formation of dislocations, dense dislocation walls, subgrains, and grains in the lower, middle, upper, and top layers of the treated specimens. Refinement of the $M_{23}C_6$ precipitates was also observed, the size and the number density of which were found to decrease as depth from the top surface decreased. The complex microstructure and microstructural evolution of the TMF steel samples upon the UNSM treatment were well-characterized by combined use of EBSD and TEM techniques.

The Effect of Heat Treatment on the Thermal Expansion Behavior of Electroformed Nano-crystalline Fe-42 wt%Ni Alloy

  • Lee, Minsu;Han, Yunho;Yim, Tai Hong
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.293-296
    • /
    • 2014
  • Fe-Ni has been of great interest because it is known as one of low thermal expansion alloys as various application areas. This alloy was fabricated by electroforming process, and effect of heat treatment on thermal expansion and hardness was investigated. Nano-crystalline structure of 13.3 - 63.5 nm in size was observed in the as-deposited alloy. To investigate the effect of heat treatment on grain growth and mechanical/thermal properties, we conducted hardness and coefficient of thermal expansion (CTE). From this, we confirmed these properties were varied by heat treatment. In this nano-crystalline alloy, we could observe abnormal behavior in thermal expansion between $350-400^{\circ}C$. Additionally, an abrupt change in hardness has also been observed. However, once the grains grow up to micro-sized the mechanical and thermal properties mentioned above were stabilized similar to those of bulk alloys due to heat treatment.

Properties of Piezoelectric Generators and K0.5Bi0.5TiO3 Films Prepared by Sol-Gel Method (졸-겔법에 의해 제조한 K0.5Bi0.5TiO3 막과 압전발전기의 특성)

  • Lee, Young-Ho;Park, Sang-Shik
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.649-656
    • /
    • 2021
  • K0.5Bi0.5TiO3 (KBT) thin films were prepared by sol-gel processing for future use in piezoelectric generators. It is believed that the annealing temperature of films plays an important role in the output performance of piezoelectric generators. KBT films prepared on Ni substrates were annealed at 500 ~ 700 ℃. Tetragonal KBT films were formed after annealing process. As the annealing temperature increased, the grain size of KBT films increased. KBT thin films show piezoelectric constant (d33) from 23 to 41 pC/N. The increase of grain size in KBT films brought about output voltage and current in the KBT generators. Also, the increase in the displacement of specimens during bending test resulted in increases in output voltage and current. Although KBT generators showed lower output power than those of generators prepared using NBT films, as reported previously, the KBT films prepared by sol-gel method show applicability as piezoelectric thin films for lead-free nano-generators, along with NBT films.

Microstructures and Grain Stabilities of Mg-Zn-(Zr) Alloys (Mg-Zn-(Zr) 합금의 미세조직과 결정립의 안정성)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.6
    • /
    • pp.309-314
    • /
    • 2010
  • Microstructures and grain growth behaviors at elevated temperatures have been investigated for extruded Mg-2%Zn and Mg-2%Zn-0.3%Zr alloys, in order to clarify the role of Zr in grain stability of Mg-Zn alloy. The grain size of Zr-free alloy increased continuously with an increase in annealing temperature, when isochronally annealed for 60 min from 573 to 723K, while the grains of the Zr-containing alloy were relatively stable up to 723 K. The activation energies for grain growth ($E_g$) between 573 and 723 K were calculated as 77.8 and 118.6 kJ/mole for the Mg-2%Zn and Mg-2%Zn-0.3%Zr alloys, respectively, which indicates that grains in the Zr-added alloy possess higher thermal stabilities at elevated temperatures. TEM observations on the annealed Mg-2%Zn and Mg-2%Zn-0.3%Zr alloys revealed that enhanced grain stability resulting from Zr addition into Mg-Zn alloy would be ascribed to the restriction of grain growth by stable Zn-Zr nano-precipitates distributed in the microstructure.

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1996.11a
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

Electrical Transport Properties and Magnetoresistance of (1-x)La0.7Sr0.3MnO3/xZnFe2O4 Composites

  • Seo, Yong-Jun;Kim, Geun-Woo;Sung, Chang-Hoon;Lee, Chan-Gyu;Koo, Bon-Heun
    • Korean Journal of Materials Research
    • /
    • v.20 no.3
    • /
    • pp.137-141
    • /
    • 2010
  • The $(1-x)La_{0.7}Sr_{0.3}MnO_3(LSMO)/xZnFe_2O_4$(ZFO) (x = 0, 0.01, 0.03, 0.06 and 0.09) composites were prepared by a conventional solid-state reaction method. We investigated the structural properties, magnetic properties and electrical transport properties of (1-x)LSMO/xZFO composites using X-ray diffraction (XRD), scanning electron microscopy (SEM), field-cooled dc magnetization and magnetoresistance (MR) measurements. The XRD and SEM results indicate that LSMO and ZFO coexist in the composites and the ZFO mostly segregates at the grain boundaries of LSMO, which agreed well with the results of the magnetic measurements. The resistivity of the samples increased by the increase of the ZFO doping level. A clear metal-to-insulator (M-I) transition was observed at 360K in pure LSMO. The introduction of ZFO further downshifted the transition temperature (350K-160K) while the transition disappeared in the sample (x = 0.09) and it presented insulating/semiconducting behavior in the measured temperature range (100K to 400K). The MR was measured in the presence of the 10kOe field. Compared with pure LSMO, the enhancement of low-field magnetoresistance (LFMR) was observed in the composites. It was clearly observed that the magnetoresistance effect of x = 0.03 was enhanced at room temperature range. These phenomena can be explained using the double-exchange (DE) mechanism, the grain boundary effect and the intrinsic transport properties together.