DOI QR코드

DOI QR Code

Properties of Piezoelectric Generators and K0.5Bi0.5TiO3 Films Prepared by Sol-Gel Method

졸-겔법에 의해 제조한 K0.5Bi0.5TiO3 막과 압전발전기의 특성

  • Lee, Young-Ho (Dept. of Nano & Materials Science and Engineering, Kyungpook National University) ;
  • Park, Sang-Shik (Dept. of Nano & Materials Science and Engineering, Kyungpook National University)
  • 이영호 (경북대학교 나노소재공학과) ;
  • 박상식 (경북대학교 나노소재공학과)
  • Received : 2021.10.19
  • Accepted : 2021.11.15
  • Published : 2021.11.27

Abstract

K0.5Bi0.5TiO3 (KBT) thin films were prepared by sol-gel processing for future use in piezoelectric generators. It is believed that the annealing temperature of films plays an important role in the output performance of piezoelectric generators. KBT films prepared on Ni substrates were annealed at 500 ~ 700 ℃. Tetragonal KBT films were formed after annealing process. As the annealing temperature increased, the grain size of KBT films increased. KBT thin films show piezoelectric constant (d33) from 23 to 41 pC/N. The increase of grain size in KBT films brought about output voltage and current in the KBT generators. Also, the increase in the displacement of specimens during bending test resulted in increases in output voltage and current. Although KBT generators showed lower output power than those of generators prepared using NBT films, as reported previously, the KBT films prepared by sol-gel method show applicability as piezoelectric thin films for lead-free nano-generators, along with NBT films.

Keywords

Acknowledgement

This Research was supported by Kyungpook National University Research Fund, 2019.

References

  1. F. R. Fan, W. Tang and Z. L. Wang, Adv. Mater., 28, 4283 (2016). https://doi.org/10.1002/adma.201504299
  2. K. I. Park, J. H. Son, G. T. Hwang, C. K. Jeong, J. Ryu, M. Koo, I. Choi, S. H. Lee, M. Byun, Z. L. Wang and K. J. Lee, Adv. Mater., 26, 2514 (2014). https://doi.org/10.1002/adma.201305659
  3. Z. L. Wang and J. Song, Science, 312, 242 (2006). https://doi.org/10.1126/science.1124005
  4. S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang and Z. L. Wang, Nat. Nanotechnol., 5, 366 (2010). https://doi.org/10.1038/nnano.2010.46
  5. K. Momeni, G. M. Odegard and R. S. Yassar, J. Appl. Phys., 108, 114303 (2010). https://doi.org/10.1063/1.3517095
  6. A. T. Le, M. Ahmadipour and S. Y. Pung, J. Alloys Compd., 844, 156172 (2020). https://doi.org/10.1016/j.jallcom.2020.156172
  7. X. Niu, W. Jia, S. Qian, J. Zhu, J. Zhang, X. Hou, J. Mu, W. Geng, J. Cho, J. He and X. Chou, ACS Sustainable Chem. Eng., 7, 979 (2019). https://doi.org/10.1021/acssuschemeng.8b04627
  8. K. I. Park, S. Xu, Y. Liu, G. T. Hwang, S. J. L. Kang, Z. L. Wang and K. J. Lee, Nano Lett., 10, 4939 (2010). https://doi.org/10.1021/nl102959k
  9. S. Huo, S. Yuan, Z. Tian, C. Wang and Y. Qiu, J. Am. Ceram. Soc., 95, 1383 (2012). https://doi.org/10.1111/j.1551-2916.2011.04992.x
  10. S. Park, Y. Kim, H. Jung, J. Y. Park, N. Lee and Y. Seo, Sci. Rep., 7, 17290 (2017). https://doi.org/10.1038/s41598-017-17791-3
  11. N. R. Alluri, A. Chandrasekhar, V. Vivekananthan, Y. Purusothaman, S, Selvarajan, J. H. Jeong and S. J. Kim, ACS Sustainable Chem. Eng., 5, 4730 (2017). https://doi.org/10.1021/acssuschemeng.7b00117
  12. X. Wang, J. Wu, D. Xiao, J. Zhu, X. Cheng, T. Zheng, B. Zhang, X. Lou and X. Wang, J. Am. Chem. Soc., 136, 2905 (2104). https://doi.org/10.1021/ja500076h
  13. J. Wu, D. Xiao and J. Zhu, J. Mater. Sci.: Mater. Electron., 26, 9297 (2015). https://doi.org/10.1007/s10854-015-3084-2
  14. D. Zhou, Y. Zhou, Y. Tian, Y. Tu, G. Zheng and H. Gu, J. Mater. Sci. Technol., 31, 1181 (2015). https://doi.org/10.1016/j.jmst.2015.07.019
  15. V. A. Isupov, Ferroelectrics, 315, 123 (2005). https://doi.org/10.1080/001501990910276
  16. M. H. H. Jumali, S. M. Mohammad, R. Awang, M. Yahaya and M. M. Salleh, Adv. Mater. Res., 364, 412 (2011). https://doi.org/10.4028/www.scientific.net/AMR.364.412
  17. L. Hou, Y. D. Hou, X. M. Song, M. K. Zhu, H. Wang and H. Yan, Mater. Res. Bull., 41, 1330 (2006). https://doi.org/10.1016/j.materresbull.2005.12.010
  18. Y. D. Hou, L. Hou, S. Y. Huang, M. K. Zhu, H. Wang and H. Yan, Solid State Commun., 137, 658 (2006). https://doi.org/10.1016/j.ssc.2006.01.023
  19. M. Yaseen, X. Chen, W. Ren, Y. Feng, P. Shi, X. Wu and W. Zhu, Ceram. Int., 39, S471 (2013). https://doi.org/10.1016/j.ceramint.2012.10.116
  20. J. Sengupta, R. K. Sahoo, K. K. Bardhan and C. D. Mukherjee, Mater. Lett., 65, 2572 (2011). https://doi.org/10.1016/j.matlet.2011.06.021
  21. J. P. Mecurio and P. Marchet, Integrated Ferroelectrics Int. J., 61, 163 (2004). https://doi.org/10.1080/10584580490459107
  22. Y. Hou, M. Zhu, L. Hou, J. Liu, J. Tang, H. Wang and H. Yan, J. Cryst. Growth, 273, 500 (2005). https://doi.org/10.1016/j.jcrysgro.2004.09.055
  23. J. Konig and D. Suvorov, J. Eur. Ceram. Soc., 35, 2791 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.04.003
  24. P. V. B. Rao, E. V. Ramana and T. B. Sankaram, J. Alloys Compd., 467, 293 (2009). https://doi.org/10.1016/j.jallcom.2007.11.089
  25. Y. S. Sung, J. M. Kim, J. H. Cho, T. K. Song, M. H. Kim, H. H. Chong, T. G. Park, D. Do and S. S. Kim, Integrated Ferroelectrics Int. J., 114, 92 (2010). https://doi.org/10.1080/10584587.2010.488190
  26. J. A. Cho, M. H. Kuk, Y. S. Sung, S. H. Lee, T. K. Song, S. J. Jeong, J. S. Song and M. H. Kim, Korean J. Mater. Res., 15, 639 (2005). https://doi.org/10.3740/MRSK.2005.15.10.639
  27. X. Liu, X. J. Zheng, J. Y. Liu and K. S. Zhou, J. Electroceramics, 29, 270 (2012). https://doi.org/10.1007/s10832-012-9771-y
  28. Y. Huan, X. Wang, J. Fang and L. Li, J. Eur. Ceram. Soc., 34, 1445 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.11.030
  29. S. Huo, S. Yuan, Z. Tian, C. Wang and Y. Qiu, J. Am. Ceram. Soc., 95, 1383 (2012). https://doi.org/10.1111/j.1551-2916.2011.04992.x
  30. C. R. Bowen, H. A. Kim, P. M. Weaver and S. Dunn, Energy Environ. Sci., 7, 25 (2014). https://doi.org/10.1039/C3EE42454E