Multi-scale simulation of drying process for porous materials using molecular dynamics (part 2: material properties)

분자동역학을 이용한 다공성 물질 건조공정 멀티스케일 시뮬레이션(2부: 미시 물성)

  • Baik S.M. (Department of Percision Mechanical Engineering, Graduate School, Hanyang University) ;
  • Keum Y.T. (Division of Mechanical Engineering, Hanyang University)
  • 백성민 (한양대학교 일반대학원 정밀기계공학과) ;
  • 금영탁 (한양대학교 기계공학부)
  • Published : 2005.08.01

Abstract

As the properties of porous materials during the drying process relate to the atomistic defects of heterogeneous materials such as dislocation, grain, grain boundary, pore, etc., the knowledge of nano-scale analysis is needed in order to accurately analyze the drying process for porous materials. In this study, the atomic behavior of porous materials Is statically predicted by using the molecular dynamics simulation and the nano-scale material properties are computed. The elastic modulus, thermal expansion coefficient, and volumetric heat capacity numerically found from the molecular dynamics simulation are compared with those of experiment and theory and proved the accuracy.

건조공정 중인 다공성 물질의 물성은 재료의 비균질성 즉 전위, 입자, 입계, 균열, 기공과 같은 미시적인 결함인자들의 영향을 받는다. 따라서 다공성 물질의 건조공정을 전산 시뮬레이션하기 위해서는 원자 스케일 해석을 통한 미시적 물성을 알아야 한다. 본 연구에서는 분자동역학 시뮬레이션을 이용하여 원자 모델을 구성하고 원자 상호간 거동을 예측하여 재료의 미시적 물성을 계산하였다. 이렇게 구한 탄성계수, 열팽창계수, 체적 열용량은 실험 및 이론에 기초한 결과들과 비교하여 검증하였다.

Keywords

References

  1. A.M. Krivtsov and M. Wiercigroch, 'Molecular dynamics simulation of mechanical properties for polycrystal materials', Mater. Phys. Mech. 3 (2001) 45
  2. Y.S. Seo, J.K. Lee, Y. Ichikawa, K. Kawamura, G.C. Jeong and G.W. Kim, 'A study on anisotropic characteristics of axial strengths in ${\alpha}$-quartz by using molecular dynamics simulation and uniaxial compression test', Tunnel and Underground Space (2000)
  3. D. Greenspan, 'Supercomputer simulation of cracks and fractures by quasimolecular dynamics', The Journal of Physics and Chemistry of Solids 50[12] (1989) 1245 https://doi.org/10.1016/0022-3697(89)90396-X
  4. 'Material science by simulation' (Sigma Press, 2001)
  5. J. Tersoff, 'Empirical interatomic potential for carbon with applications to amorphous carbon', Phys. Rev. Lett. 61 [25] (1998) 2879 https://doi.org/10.1103/PhysRevLett.61.2879
  6. J.M. Haile, 'Molecular dynamics simulation' (John Wiley & Sons, 1992)
  7. J. Rifkin, 'Molecular Dynamics Program: XMD 2.5.32' (University of Connecticut, 2003)
  8. 'Principles of ceramics processing' (John Wiley & Sons, 1995)
  9. J.E. Funk, D.R. Dinger, in 'Predictive process control of crowded particulate suspensions applied to ceramic manufacturing' (Kluwer Academic Publishers: Boston, 1994)
  10. 'Sol-gel science: the physics and chemistry of sol-gel processing' (Academic Press, 1990)
  11. S.P. Kim et al., 'Molecular dynamics simulation at the early stage of thin-film deposition: Al or Co on Co(111)', Japanese Journal of Applied Physics 43 (2004) 3818
  12. J.W.Oh, S.M. Baik and Y.T. Keum, 'Multi-scale simulation of drying process for porous materials using molecular dynamics (part 1: homogenization method)', Journal of the Korean Crystal Growth and Crystal Technology 14[3] (2004) 115
  13. R.G. Munro, 'Material properties of a sintered ${\alpha}$-SiC', Journal of Physical and Chemical Reference Data 26[5] (1965) 1195