DOI QR코드

DOI QR Code

Microstructures and Grain Stabilities of Mg-Zn-(Zr) Alloys

Mg-Zn-(Zr) 합금의 미세조직과 결정립의 안정성

  • Jun, Joong-Hwan (Production Technology R&D Division, Korea Institute of Industrial Technology)
  • 전중환 (한국생산기술연구원 뿌리산업기술연구본부)
  • Received : 2010.09.03
  • Accepted : 2010.10.21
  • Published : 2010.11.30

Abstract

Microstructures and grain growth behaviors at elevated temperatures have been investigated for extruded Mg-2%Zn and Mg-2%Zn-0.3%Zr alloys, in order to clarify the role of Zr in grain stability of Mg-Zn alloy. The grain size of Zr-free alloy increased continuously with an increase in annealing temperature, when isochronally annealed for 60 min from 573 to 723K, while the grains of the Zr-containing alloy were relatively stable up to 723 K. The activation energies for grain growth ($E_g$) between 573 and 723 K were calculated as 77.8 and 118.6 kJ/mole for the Mg-2%Zn and Mg-2%Zn-0.3%Zr alloys, respectively, which indicates that grains in the Zr-added alloy possess higher thermal stabilities at elevated temperatures. TEM observations on the annealed Mg-2%Zn and Mg-2%Zn-0.3%Zr alloys revealed that enhanced grain stability resulting from Zr addition into Mg-Zn alloy would be ascribed to the restriction of grain growth by stable Zn-Zr nano-precipitates distributed in the microstructure.

Keywords

References

  1. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita and T.G. Langdon : Acta Mater., 50 (2002) 553. https://doi.org/10.1016/S1359-6454(01)00368-8
  2. R. Z. Valiev, D. A. Salimonenko, N. K. Tsenev, P. B. Berbon, and T. G. Langdon : Scripta Mater., 37 (1997) 1945. https://doi.org/10.1016/S1359-6462(97)00387-4
  3. K. E. Knipling, D. C. Dunand and D. N. Seidman : Acta Mater., 56 (2008) 114. https://doi.org/10.1016/j.actamat.2007.09.004
  4. J. L. Ning and D. M. Jiang : Mater. Sci. Eng. A, 452-453 (2007) 552. https://doi.org/10.1016/j.msea.2006.11.025
  5. P. Sepehrband, R. Mahmudi and F. Khomamizadeh : Scripta Mater., 52 (2005) 253. https://doi.org/10.1016/j.scriptamat.2004.10.025
  6. Z. Jia, G. Hu, B. Forbord and J. K. Solberg : Mater. Sci. Eng. A, 483-484 (2008) 195. https://doi.org/10.1016/j.msea.2006.10.191
  7. M. Qian and A. Das : Scripta Mater., 54 (2006) 881. https://doi.org/10.1016/j.scriptamat.2005.11.002
  8. Y. C. Lee, A. K. Dahle ad D. H. StJohn : Metall. Mater. Trans. A, 31 (2000) 2895. https://doi.org/10.1007/BF02830349
  9. M. Shahzad and L. Wagner : Scripta Mater., 60 (2009) 536. https://doi.org/10.1016/j.scriptamat.2008.12.006
  10. W. N. Tang, R. S. Chen and E. H. Han : J. Alloy. Comp., 477 (2009) 636. https://doi.org/10.1016/j.jallcom.2008.10.089
  11. M. Sun, G. Wu, W. Wang and W. Ding : Mater. Sci. Eng. A, 523 (2009) 145. https://doi.org/10.1016/j.msea.2009.06.002
  12. J. H. Jun, Submitted to J. Korean Society for Heat Treatment.
  13. H. K. Kim and W. J. Kim : Mater. Sci. Eng. A, 385 (2004) 300. https://doi.org/10.1016/S0921-5093(04)00882-2
  14. X. Gao and J. F. Nie : Scripta Mater., 57 (2007) 655. https://doi.org/10.1016/j.scriptamat.2007.06.005
  15. J. S. Chun and J. G. Byrne : J. Mater. Sci., 4 (1969) 861. https://doi.org/10.1007/BF00549777
  16. C. J. Bettles, M. A. Gibson and K. Venkatesan : Scripta Mater., 51 (2004) 193. https://doi.org/10.1016/j.scriptamat.2004.04.020
  17. H. Okamoto : "Phase diagrams for binary alloys", ASM International, Materials Park, OH, p. 558.
  18. J. Pelcova, B. Smola and I. Stulikova : Mater. Sci. Eng. A, 462 (2007) 334. https://doi.org/10.1016/j.msea.2005.12.110