• Title/Summary/Keyword: nand gate

Search Result 57, Processing Time 0.027 seconds

An Algorithm for One-Dimensional MOS-LSI Gate Array (1차원 MOS-LSI 게이트 배열 알고리즘)

  • 조중회;정정화
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.4
    • /
    • pp.13-16
    • /
    • 1984
  • This paper proposes a new layout algorithm in order to minimize chip area in one dimensional MOS - LSI composed of basic cells, such as NAND or NOR gates. The virtval gates are constructed, which represent I/O of signal lines at the left-most and at the right-most side of the MCS gate array. With this, a heuristic algorithm is realized that can minimize the number of straight connectors passing through each gate, and as the result, minimize the horizontal tracks necessary to route. The usefulness of the algorithm proposed is shown by the execution of the experimental program on practical logic circuits.

  • PDF

All-Optical Composite Logic Gates with XOR, NOR, OR, and NAND Functions using Parallel SOA-MZI Structures (병렬 SOA-MZI 구조들을 이용한 XOR, NOR, OR 그리고 NAND 기능들을 가진 전광 복합 논리 게이트들)

  • Kim Joo-Youp;Han Sang-Kook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.13-16
    • /
    • 2006
  • We have proposed and experimentally demonstrated the all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures to make it possible to simultaneously perform various logical functions. The proposed scheme is robust and feasible for high speed all-optical logic operation with high ER.

Highly Scalable NAND Flash Memory Cell Design Embracing Backside Charge Storage

  • Kwon, Wookhyun;Park, In Jun;Shin, Changhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.286-291
    • /
    • 2015
  • For highly scalable NAND flash memory applications, a compact ($4F^2/cell$) nonvolatile memory architecture is proposed and investigated via three-dimensional device simulations. The back-channel program/erase is conducted independently from the front-channel read operation as information is stored in the form of charge at the backside of the channel, and hence, read disturbance is avoided. The memory cell structure is essentially equivalent to that of the fully-depleted transistor, which allows a high cell read current and a steep subthreshold slope, to enable lower voltage operation in comparison with conventional NAND flash devices. To minimize memory cell disturbance during programming, a charge depletion method using appropriate biasing of a buried back-gate line that runs parallel to the bit line is introduced. This design is a new candidate for scaling NAND flash memory to sub-20 nm lateral dimensions.

The Analysis of Retention Characteristic according to Remnant Polarization(Pr) and Saturated Polarization(Ps) in 3D NAND Flash Memory (3D NAND Flash Memory의 Remnant Polarization(Pr)과 Saturated Polarization(Ps)에 따른 Retention 특성 분석)

  • Lee, Jaewoo;Kang, Myounggon
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.329-332
    • /
    • 2022
  • In this paper, retention characteristics of lateral charge migration according to parameters of 3D NAND flash memory to which ferroelectric (HfO2) structure is applied and ∆Vth were analyzed. The larger the Ps, the greater maximum polarization possible in ferroelectric during Programming. Therefore, the initial Vth increases by about 1.04V difference at Ps 70µC/cm2 than at Ps 25µC/cm2. Also, electrons trapped after the Program operation causes lateral charge migration over time. Since ferroelectric maintains polarization without applying voltage to the gate after Programming, regardless of Ps value, polarization increases as Pr increases and the ∆Vth due to lateral charge migration becomes smaller by about 1.54V difference at Pr 50µC/cm2 than Pr 5µC/cm2.

The Characteristics of p-channel SONOS Transistor for the NAND Charge-trap Flash Memory (NAND 전하트랩 플래시메모리를 위한 p채널 SONOS 트랜지스터의 특성)

  • Kim, Byung-Cheul;Kim, Joo-Yeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.1
    • /
    • pp.7-11
    • /
    • 2009
  • In this study, p-channel silicon-oxide-nitride-oxide-silicon(SONOS) transistors are fabricated and characterized as an unit cell for NAND flash memory. The SONOS transistors are fabricated by $0.13{\mu}m$ low power standard logic process technology. The thicknesses of gate insulators are 2.0 nm for the tunnel oxide, 1.4 nm for the nitride layer, and 4.9 nm for the blocking oxide. The fabricated SONOS transistors show low programming voltage and fast erase speed. However, the retention and endurance of the devices show poor characteristics.

An Equalizing Algorithm for Cell-to-Cell Interference Reduction in MLC NAND Flash Memory (MLC NAND 플래시 메모리의 셀 간 간섭현상 감소를 위한 등화기 알고리즘)

  • Kim, Doo-Hwan;Lee, Sang-Jin;Nam, Ki-Hun;Kim, Shi-Ho;Cho, Kyoung-Rok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1095-1102
    • /
    • 2010
  • This paper presents an equalizer reducing CCI(cell-to-cell interference) in MLC NAND flash memory. High growth of the flash memory market has been driven by two combined technological efforts that are an aggressive scaling technique which doubles the memory density every year and the introduction of MLC(multi level cell) technology. Therefore, the CCI is a critical factor which affects occurring data errors in cells. We introduced an equation of CCI model and designed an equalizer reducing CCI based on the proposed equation. In the model, we have been considered the floating gate capacitance coupling effect, the direct field effect, and programming methods of the MLC NAND flash memory. Also we design and verify the proposed equalizer using Matlab. As the simulation result, the error correction ratio of the equalizer shows about 20% under 20nm NAND process where the memory channel model has serious CCI.

A Study on Threshold Voltage Degradation by Loss Effect of Trapped Charge in IPD Layer for Program Saturation in a MLC NAND Flash Memory (멀티레벨 낸드 플래쉬 메모리 프로그램 포화 영역에서의 IPD 층에 트랩된 전하의 손실 효과에 의한 문턱 전압 저하 특성에 대한 연구)

  • Choi, Chae-Hyoung;Choi, Deuk-Sung;Jeong, Seung-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.47-52
    • /
    • 2017
  • This research scrutinizes the data retention characteristics of the MLC NAND Flash Memory instigated by the loss effect of trapped charge when the memory is in the state of program saturation. It is attributed to the threshold voltage saturation phenomenon which engenders an interruption to the linear increase of the voltage in the memory cell. This phenomenon is occasioned by the outflow of the trapped charge from the floating gate to the control gate, which has been programmed by the ISPP (Incremental Step Pulse Programming), via Inter-Poly Dielectric (IPD). This study stipulates the significant degradation of thermal retention characteristics of threshold voltage in the saturation region in contrast to the ones in the linear region. Thus the current study evaluates the data retention characteristics of voltage after the program with a repeated reading test in various measurement conditions. The loss effect of trapped charge is found in the IPD layer located between the floating gate and the control gate especially in the nitride layer of the IPD. After the thermal stress, the trapped charge is de-trapped and displays the impediment of the characteristic of reliability. To increase the threshold saturation voltage in the NAND Flash Memory, the storage ability of the charge in the floating gate must be enhanced with a well-thought-out designing of the module in the IPD layer.

A Circuit design with Yield Maximization (Yield 최대화를 고려한 회로설계)

  • 김희석;임재석
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.102-109
    • /
    • 1985
  • A new yield maximization procedure by investigating method of the multidimensional Monte Carlo integration is presented. And then maximum yield is obtained by the new modified weight selection algorithm applied to objective function of MOSFET NAND GATE Also this yield maximization procedure can be applied to nonconvex objective function.

  • PDF

Study on Improving the Mechanical Stability of 3D NAND Flash Memory String During Electro-Thermal Annealing (3D NAND 플래시메모리 String에 전열어닐링 적용을 가정한 기계적 안정성 분석 및 개선에 관한 연구)

  • Kim, Yu-Jin;Park, Jun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.246-254
    • /
    • 2022
  • Localized heat can be generated using electrically conductive word-lines built into a 3D NAND flash memory string. The heat anneals the gate dielectric layer and improves the endurance and retention characteristics of memory cells. However, even though the electro-thermal annealing can improve the memory operation, studies to investigate material failures resulting from electro-thermal stress have not been reported yet. In this context, this paper investigated how applying electro-thermal annealing of 3D NAND affected mechanical stability. Hot-spots, which are expected to be mechanically damaged during the electro-thermal annealing, can be determined based on understanding material characteristics such as thermal expansion, thermal conductivity, and electrical conductivity. Finally, several guidelines for improving mechanical stability are provided in terms of bias configuration as well as alternative materials.

An Equalizing for CCI Canceling in MLC NAND Flash Memory (MLC NAND 플래시 메모리의 CCI 감소를 위한 등화기 설계)

  • Lee, Kwan-Hee;Lee, Sang-Jin;Kim, Doo-Hwan;Cho, Kyoung-Rok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.10
    • /
    • pp.46-53
    • /
    • 2011
  • This paper presents an equalizer reducing CCI(cell-to-cell interference) in MLC NAND flash memory. The CCI is a critical factor which affects occurring data errors in a cell, when surrounding cells are programed. We derived a characteristic equation for CCI considering write procedure of data that is similar with signal equalizing. The model considers the floating gate capacitance coupling effect, the direct field effect, and programming methods of the MLC NAND flash memory. We verify the proposed equalizer comparing with the measured data of 1-block MLC NAND flash memory. As the simulation result, the equalizer shows an error correction ratio about 60% under 20nm NAND process.