A Hilbert space operator A ∈ B(H) is a generalised n-projection, denoted A ∈ (G-n-P), if A*n = A. (G-n-P)-operators A are normal operators with finitely countable spectra σ(A), subsets of the set $\{0\}\,{\cup}\,\{\sqrt[n+1]{1}\}.$ The Aluthge transform à of A ∈ B(H) may be (G - n - P) without A being (G - n - P). For doubly commuting operators A, B ∈ B(H) such that σ(AB) = σ(A)σ(B) and ${\parallel}A{\parallel}\,{\parallel}B{\parallel}\;{\leq}\;{\parallel}{\tilde{AB}}{\parallel},$ ${\tilde{AB}}\;{\in}\;(G\,-\,n\,-\,P)$ if and only if $A\;=\;{\parallel}{\tilde{A}}{\parallel}\,(A_{00}\,{\oplus}\,(A_0\,{\oplus}\,A_u))$ and $B\;=\;{\parallel}{\tilde{B}}{\parallel}\,(B_0\,{\oplus}\,B_u),$ where A00 and B0, and A0 ⊕ Au and Bu, doubly commute, A00B0 and A0 are 2 nilpotent, Au and Bu are unitaries, A*nu = Au and B*nu = Bu. Furthermore, a necessary and sufficient condition for the operators αA, βB, αà and ${\beta}{\tilde{B}},\;{\alpha}\,=\,\frac{1}{{\parallel}{\tilde{A}}{\parallel}}$ and ${\beta}\,=\,\frac{1}{{\parallel}{\tilde{B}}{\parallel}},$ to be (G - n - P) is that A and B are spectrally normaloid at 0.