• Title/Summary/Keyword: n-normal operators

Search Result 26, Processing Time 0.017 seconds

ON UNBOUNDED SUBNOMAL OPERATORS

  • Jin, Kyung-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.65-70
    • /
    • 1993
  • In this paper we will extend some notions of bounded linear operators to some unbounded linear operators. Let H be a complex separable Hilbert space and let B(H) denote the algebra of bounded linear operators. A closed densely defind linear operator S in H, with domain domS, is called subnormal if there is a Hilbert space K containing H and a normal operator N in K(i.e., $N^{*}$N=N $N^*/)such that domS .subeq. domN and Sf=Nf for f .mem. domS. we will show that the Radjavi and Rosenthal theorem holds for some unbounded subnormal operators; if $S_{1}$ and $S_{2}$ are unbounded subnormal operators on H with dom $S_{1}$= dom $S^{*}$$_{1}$ and dom $S_{2}$=dom $S^{*}$$_{2}$ and A .mem. B(H) is injective, has dense range and $S_{1}$A .coneq. A $S^{*}$$_{2}$, then $S_{1}$ and $S_{2}$ are normal and $S_{1}$.iden. $S^{*}$$_{2}$.2}$.X>.

  • PDF

UPPER TRIANGULAR OPERATORS WITH SVEP

  • Duggal, Bhagwati Prashad
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.235-246
    • /
    • 2010
  • A Banach space operator A $\in$ B(X) is polaroid if the isolated points of the spectrum of A are poles of the resolvent of A; A is hereditarily polaroid, A $\in$ ($\mathcal{H}\mathcal{P}$), if every part of A is polaroid. Let $X^n\;=\;\oplus^n_{t=i}X_i$, where $X_i$ are Banach spaces, and let A denote the class of upper triangular operators A = $(A_{ij})_{1{\leq}i,j{\leq}n$, $A_{ij}\;{\in}\;B(X_j,X_i)$ and $A_{ij}$ = 0 for i > j. We prove that operators A $\in$ A such that $A_{ii}$ for all $1{\leq}i{\leq}n$, and $A^*$ have the single-valued extension property have spectral properties remarkably close to those of Jordan operators of order n and n-normal operators. Operators A $\in$ A such that $A_{ii}$ $\in$ ($\mathcal{H}\mathcal{P}$) for all $1{\leq}i{\leq}n$ are polaroid and have SVEP; hence they satisfy Weyl's theorem. Furthermore, A+R satisfies Browder's theorem for all upper triangular operators R, such that $\oplus^n_{i=1}R_{ii}$ is a Riesz operator, which commutes with A.

THE HYPERINVARIANT SUBSPACE PROBLEM FOR QUASI-n-HYPONORMAL OPERATORS

  • Kim, An-Hyun;Kwon, Eun-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.383-389
    • /
    • 2007
  • In this paper we examine the hyperinvariant subspace problem for quasi-n-hyponormal operators. The main result on this problem is as follows. If T = N + K is such that N is a quasi-n-hyponormal operator whose spectrum contains an exposed arc and K belongs to the Schatten p-ideal then T has a non-trivial hyperinvariant subspace.

NORMAL WEIGHTED BERGMAN TYPE OPERATORS ON MIXED NORM SPACES OVER THE BALL IN ℂn

  • Avetisyan, Karen L.;Petrosyan, Albert I.
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.313-326
    • /
    • 2018
  • The paper studies some new ${\mathbb{C}}^n$-generalizations of Bergman type operators introduced by Shields and Williams depending on a normal pair of weight functions. We find the values of parameter ${\beta}$ for which these operators are bounded on mixed norm spaces L(p, q, ${\beta}$) over the unit ball in ${\mathbb{C}}^n$. Moreover, these operators are bounded projections as well, and the images of L(p, q, ${\beta}$) under the projections are found.

Finite Operators and Weyl Type Theorems for Quasi-*-n-Paranormal Operators

  • ZUO, FEI;YAN, WEI
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.885-892
    • /
    • 2015
  • In this paper, we mainly obtain the following assertions: (1) If T is a quasi-*-n-paranormal operator, then T is finite and simply polaroid. (2) If T or $T^*$ is a quasi-*-n-paranormal operator, then Weyl's theorem holds for f(T), where f is an analytic function on ${\sigma}(T)$ and is not constant on each connected component of the open set U containing ${\sigma}(T)$. (3) If E is the Riesz idempotent for a nonzero isolated point ${\lambda}$ of the spectrum of a quasi-*-n-paranormal operator, then E is self-adjoint and $EH=N(T-{\lambda})=N(T-{\lambda})^*$.

UNIQUENESS RELATED TO HIGHER ORDER DIFFERENCE OPERATORS OF ENTIRE FUNCTIONS

  • Xinmei Liu;Junfan Chen
    • The Pure and Applied Mathematics
    • /
    • v.30 no.1
    • /
    • pp.43-65
    • /
    • 2023
  • In this paper, by using the difference analogue of Nevanlinna's theory, the authors study the shared-value problem concerning two higher order difference operators of a transcendental entire function with finite order. The following conclusion is proved: Let f(z) be a finite order transcendental entire function such that λ(f - a(z)) < ρ(f), where a(z)(∈ S(f)) is an entire function and satisfies ρ(a(z)) < 1, and let 𝜂(∈ ℂ) be a constant such that ∆𝜂n+1 f(z) ≢ 0. If ∆𝜂n+1 f(z) and ∆𝜂n f(z) share ∆𝜂n a(z) CM, where ∆𝜂n a(z) ∈ S ∆𝜂n+1 f(z), then f(z) has a specific expression f(z) = a(z) + BeAz, where A and B are two non-zero constants and a(z) reduces to a constant.

DISJOINT SUPERCYCLIC WEIGHTED COMPOSITION OPERATORS

  • Liang, Yu-Xia;Zhou, Ze-Hua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1137-1147
    • /
    • 2018
  • In this paper, we discovered a sufficient condition ensuring the weighted composition operators $C_{{\omega}_1,{\varphi}_1},{\cdots},C_{{\omega}_N,{\varphi}_N}$ were disjoint supercyclic on $H({\Omega})$ endowed with the compact open topology. Besides, we provided a condition on inducing symbols to guarantee the disjoint supercyclicity of non-constant adjoint multipliers $M^*_{{\varphi}_1},M^*_{{\varphi}_2},{\cdots},M^*_{{\varphi}_N}$ on a Hilbert space ${\mathcal{H}}$.

OPERATORS A, B FOR WHICH THE ALUTHGE TRANSFORM ${\tilde{AB}}$ IS A GENERALISED n-PROJECTION

  • Bhagwati P. Duggal;In Hyoun Kim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1555-1566
    • /
    • 2023
  • A Hilbert space operator A ∈ B(H) is a generalised n-projection, denoted A ∈ (G-n-P), if A*n = A. (G-n-P)-operators A are normal operators with finitely countable spectra σ(A), subsets of the set $\{0\}\,{\cup}\,\{\sqrt[n+1]{1}\}.$ The Aluthge transform à of A ∈ B(H) may be (G - n - P) without A being (G - n - P). For doubly commuting operators A, B ∈ B(H) such that σ(AB) = σ(A)σ(B) and ${\parallel}A{\parallel}\,{\parallel}B{\parallel}\;{\leq}\;{\parallel}{\tilde{AB}}{\parallel},$ ${\tilde{AB}}\;{\in}\;(G\,-\,n\,-\,P)$ if and only if $A\;=\;{\parallel}{\tilde{A}}{\parallel}\,(A_{00}\,{\oplus}\,(A_0\,{\oplus}\,A_u))$ and $B\;=\;{\parallel}{\tilde{B}}{\parallel}\,(B_0\,{\oplus}\,B_u),$ where A00 and B0, and A0 ⊕ Au and Bu, doubly commute, A00B0 and A0 are 2 nilpotent, Au and Bu are unitaries, A*nu = Au and B*nu = Bu. Furthermore, a necessary and sufficient condition for the operators αA, βB, αà and ${\beta}{\tilde{B}},\;{\alpha}\,=\,\frac{1}{{\parallel}{\tilde{A}}{\parallel}}$ and ${\beta}\,=\,\frac{1}{{\parallel}{\tilde{B}}{\parallel}},$ to be (G - n - P) is that A and B are spectrally normaloid at 0.

NORMAL INTERPOLATION ON AX=Y AND Ax=y IN A TRIDIAGONAL ALGEBRA $ALG\mathcal{L}$

  • Kang, Joo-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.535-539
    • /
    • 2007
  • Given operators X and Y acting on a separable complex Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that AX=Y. In this article, we show the following: Let $Alg\mathcal{L}$ be a tridiagonal algebra on a separable complex Hilbert space $\mathcal{H}$ and let $X=(x_{ij})\;and\;Y=(y_{ij})$ be operators in $\mathcal{H}$. Then the following are equivalent: (1) There exists a normal operator $A=(a_{ij})\;in\;Alg\mathcal{L}$ such that AX=Y. (2) There is a bounded sequence $\{\alpha_n\}\;in\;\mathbb{C}$ such that $y_{ij}=\alpha_jx_{ij}\;for\;i,\;j\;{\in}\;\mathbb{N}$. Given vectors x and y in a separable complex Hilbert space $\mathcal{H}$, an interpolating operator is a bounded operator A such that Ax=y. We show the following: Let $Alg\mathcal{L}$ be a tridiagonal algebra on a separable complex Hilbert space $\mathcal{H}$ and let $x=(x_i)\;and\;y=(y_i)$ be vectors in $\mathcal{H}$. Then the following are equivalent: (1) There exists a normal operator $A=(a_{ij})\;in\;Alg\mathcal{L}$ such that Ax=y. (2) There is a bounded sequence $\{\alpha_n\}$ in $\mathbb{C}$ such that $y_i=\alpha_ix_i\;for\;i{\in}\mathbb{N}$.