• Title/Summary/Keyword: n-ZnO:In/p-Si

Search Result 68, Processing Time 0.027 seconds

Fabrication and characterization of n-IZO / p-Si and p-ZnO:(In, N) / n-Si thin film hetero-junctions by dc magnetron sputtering

  • Dao, Anh Tuan;Phan, Thi Kieu Loan;Nguyen, Van Hieu;Le, Vu Tuan Hung
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.182-188
    • /
    • 2013
  • Using a ceramic target ZnO:In with In doping concentration of 2%, hetero-junctions of n-ZnO:In/p-Si and p-ZnO:(In, N)/n-Si were fabricated by depositing Indium doped n - type ZnO (ZnO:In or IZO) and Indium-nitrogen co-doped p - type ZnO (ZnO:(In, N)) films on wafers of p-Si (100) and n-Si (100) by DC magnetron sputtering, respectively. These films with the best electrical and optical properties were then obtained. The micro-structural, optical and electrical properties of the n-type and p-type semiconductor thinfilms were characterized by X-ray diffraction (XRD), RBS, UV-vis; four-point probe resistance and room-temperature Hall effect measurements, respectively. Typical rectifying behaviors of p-n junction were observed by the current-voltage (I-V) measurement. It shows fairly good rectifying behavior with the fact that the ideality factor and the saturation current of diode are n=11.5, Is=1.5108.10-7 (A) for n-ZnO:In/p-Si hetero-jucntion; n=10.14, Is=3.2689.10-5 (A) for p-ZnO:(In, N)/n-Si, respectively. These results demonstrated the formation of a diode between n-type thin film and p-Si, as well as between p-type thin film and n-Si..

PL Property of Al-N Codoped p-type ZnO Thin Films Fabricated by DC Magnetron Sputtering

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae;Hoang, Geun-C.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.89-92
    • /
    • 2009
  • High-quality Al-N doped p-type ZnO thin films were deposited on Si and buffer layer/Si by DC magnetron sputtering in a mixture of $N_2$ and $O_2$ gas. The target was ceramic ZnO mixed with $Al_2O_3$ (2 wt%). The p-type ZnO thin films showed a carrier concentration in the range of $1.5{\times}10^{15}{\sim}2.93{\times}10^{17}\;cm^{-3}$, resistivity in the range of 131.2${\sim}$2.864 ${\Omega}cm$, mobility in the range of 3.99${\sim}$31.6 $cm^2V^{-1}s^{-l}$, respectively. It was easier to dope p-type ZnO films on Si substrates than on buffer layer/Si. The film grown on Si showed the highest quality of photoluminescence (PL) characteristics. The Al donor energy level depth $(E_d)$ of Al-N codoped ZnO films was reduced to about 50 meV, and the N acceptor energy level depth $(E_a)$ was reduced to 63 meV.

A p-n Heterojunction Diode Constructed with A p-Si Nanowire and An n-ZnO Nanoparticle Thin-Film by Dielectrophoresis (Dielectrophoresis 방법으로 제작한 Si 나노선과 ZnO 나노입자 필름 기반 p-n 이종접합 다이오드)

  • Kim, Kwang-Eun;Lee, Myeong-Won;Yun, Jung-Gwon;Kim, Sang-Sig
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.105-108
    • /
    • 2011
  • Newly-developed fabrication of a p-n heterojunction diode constructed with a p-Si nanowire (NW) and an n-ZnO nanoparticle (NP) thin-film by the dielectrophoresis (DEP) technique is demonstrated in this study. With the bias of 20 Vp-p at the input frequency of 1 MHz, the most efficient assembly of the n-ZnO NPs is shown for the fabrication of the p-n heterojunction diode with a p-Si NW. The p-n heterojunction diode fabricated in this study represents current rectifying characteristics with the turn on voltage of 1.1 V. The diode can be applied to the fabrication of optoelectrical devices such as photodetectors, light-emitting diodes (LEDs), or solar cells based on the high conductivity of the NW and the high surface to volume ratio of the NP thin film.

Dependence of the Heterojunction Diode Characteristics of ZnO/ZnO/p-Si(111) on the Buffer Layer Thickness (버퍼막 두께에 따른 ZnO/ZnO/p-Si(111) 이종접합 다이오드 특성 평가)

  • Heo, Joo-Hoe;Ryu, Hyuk-Hyun;Lee, Jong-Hoon
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.34-38
    • /
    • 2011
  • In this study, the effects of an annealed buffer layer with different thickness on heterojunction diodes based on the ZnO/ZnO/p-Si(111) systems were reported. The effects of an annealed buffer layer with different thickness on the structural, optical, and electrical properties of zinc oxide (ZnO) films on p-Si(111) were also studied. Before zinc oxide (ZnO) deposition, different thicknesses of ZnO buffer layer, 10 nm, 30 nm, 50 nm and 70 nm, were grown on p-Si(111) substrates using a radio-frequency sputtering system; samples were subsequently annealed at $700^{\circ}C$ for 10 minutes in $N_2$ in a horizontal thermal furnace. Zinc oxide (ZnO) films with a width of 280nm were also deposited using a radio-frequency sputtering system on the annealed ZnO/p-Si (111) substrates at room temperature; samples were subsequently annealed at $700^{\circ}C$ for 30 minutes in $N_2$. In this experiment, the structural and optical properties of ZnO thin films were studied by XRD (X-ray diffraction), and room temperature PL (photoluminescence) measurements, respectively. Current-voltage (I-V) characteristics were measured with a semiconductor parameter analyzer. The thermal tensile stress was found to decrease with increasing buffer layer thickness. Among the ZnO/ZnO/p-Si(111) diodes fabricated in this study, the sample that was formed with the condition of a 50 nm thick ZnO buffer layer showed a strong c-axis preferred orientation and I-V characteristics suitable for a heterojunction diode.

Effect of Oxygen Mixture Ratio on the Properties of ZnO Thin-Films and n-ZnO/p-Si Heterojunction Diode Prepared by RF Sputtering (산소 혼합 비율에 따른 RF 스퍼터링 ZnO 박막과 n-ZnO/p-Si 이종접합 다이오드의 특성)

  • Gwon, Iksun;Kim, Danbi;Kim, Yewon;Yeon, Eungbum;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.29 no.7
    • /
    • pp.456-462
    • /
    • 2019
  • ZnO thin-films are grown on a p-Si(111) substrate by RF sputtering. The effects of growth temperature and $O_2$ mixture ratio on the ZnO films are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and room-temperature photoluminescence (PL) measurements. All the grown ZnO thin films show a strong preferred orientation along the c-axis, with an intense ultraviolet emission centered at 377 nm. However, when $O_2$ is mixed with the sputtering gas, the half width at half maximum (FWHM) of the XRD peak increases and the deep-level defect-related emission PL band becomes pronounced. In addition, an n-ZnO/p-Si heterojunction diode is fabricated by photolithographic processes and characterized using its current-voltage (I-V) characteristic curve and photoresponsivity. The fabricated n-ZnO/p-Si heterojunction diode exhibits typical rectifying I-V characteristics, with turn-on voltage of about 1.1 V and ideality factor of 1.7. The ratio of current density at ${\pm}3V$ of the reverse and forward bias voltage is about $5.8{\times}10^3$, which demonstrates the switching performance of the fabricated diode. The photoresponse of the diode under illumination of chopped with 40 Hz white light source shows fast response time and recovery time of 0.5 msec and 0.4 msec, respectively.

Implementation of High Carrier Mobility in Al-N Codoped p-Type ZnO Thin Films Fabricated by Direct Current Magnetron Sputtering with ZnO:Al2O3 Ceramic Target

  • Jin, Hujie;Xu, Bing;Park, Choon-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.169-173
    • /
    • 2011
  • In this study, Al-N codoped p-type zinc oxide (ZnO) thin films were deposited on Si and homo-buffer layer templates in a mixture of $N_2$ and $O_2$ gas with ceramic ZnO:(2 wt% $Al_2O_3$) as a sputtering target using DC- magnetron sputtering. X-ray diffraction spectra of two-theta diffraction showed that all films have a predominant (002) peak of ZnO Wurtzite structure. As the $N_2$ fraction in the mixed $N_2$ and $O_2$ gases increased, field emission secondary electron microscopy revealed that the surface appearance of codoped films on Si varied from smooth to textured structure. The p-type ZnO thin films showed carrier concentration in the range of $1.5{\times}10^{15}-2.93{\times}10^{17}\;cm^{-3}$, resistivity in the range of 131.2-2.864 ${\Omega}cm$, and mobility in the range of $3.99-31.6\;cm^2V^{-1}s^{-1}$ respectively.

Atomic Layer Deposition of Nitrogen Doped ZnO and Application for Highly Sensitive Coreshell Nanowire Photo Detector

  • Jeong, Han-Eol;Gang, Hye-Min;Cheon, Tae-Hun;Kim, Su-Hyeon;Kim, Do-Yeong;Kim, Hyeong-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.26.1-26.1
    • /
    • 2011
  • We investigated the atomic layer deposition (ALD) process for nitrogen doped ZnO and the application for n-ZnO : N/p-Si (NW) coaxial hetero-junction photodetectors. ALD ZnO:N was deposited using diethylzinc (DEZ) and diluted $NH_4OH$ at $150^{\circ}C$ of substrate temperature. About 100~300 nm diameter and 5 um length of Si nanowires array were prepared using electroless etching technique in 0.108 g of $AgNO_3$ melted 20 ml HF liquid at $75^{\circ}C$. TEM images showed ZnO were deposited on densely packed SiNW structure achieving extraordinary conformality. When UV (360 nm) light was illuminated on n-ZnO:N/p-SiNW, I-V curve showed about three times larger photocurrent generation than film structure at 10 V reverse bias. Especially, at 660 nm wave length, the coaxial structure has 90.8% of external quantum efficiency (EQE) and 0.573 A/W of responsivity.

  • PDF

A Study on the Characteristic of n-ZnO:In/p-Si (111) Heterostructure by Pulsed Laser Deposition (PLD 법으로 증착된 n-ZnO:In/p-Si (111) 이종접합구조의 특성연구)

  • Jang, Bo-Ra;Lee, Ju-Young;Lee, Jong-Hoon;Kim, Jun-Je;Kim, Hong-Seung;Lee, Dong-Wook;Lee, Won-Jae;Cho, Hyeong-Kyun;Lee, Ho-Seong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.419-424
    • /
    • 2009
  • ZnO films doped with different contents of indium ($0.1{\sim}10$ at.%) were deposited on Si (111) substrate by Pulsed Laser Deposition (PLD). The structural, electrical and optical properties of the films were investigated using XRD, AFM, Hall and PL measurement. Results showed that un-doped ZnO film had (002) plane as the c-axis orientated growth, whereas indium doped ZnO films exhibited the peak of (002) and the weak (101) plane. In addition, in the indium doped ZnO films, the electron concentration is ten times higher than that of un-doped ZnO film, while the resistivity is ten times lower than that of un-doped ZnO film. The indium doped ZnO films have UV emission about 380 nm and show a red shift with increasing contents of indium. The I-V curve of the fabricated diode show the typical diode characteristics and have the turn on voltage of about 2 V.

A Study on the Optical Property of Al-N-codoped p-type ZnO Thin Films Fabricated by DC Magnetron Sputtering Method

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.319-320
    • /
    • 2009
  • In this study, high-quality Al-N doped p-type ZnO thin films were deposited on n-type Si (100) wafer or Si coated with buffer layer by DC magnetron sputtering in the mixture of $N_2$ and $O_2$ gas. The target was ceramic ZnO mixed with $Al_2O_3$ (2 wt%). The p-type ZnO thin film showed higher carrier concentration $2.93\times10^{17}cm^{-3}$, lower resistivity of $5.349\;{\Omega}cm$ and mobility of $3.99\;cm^2V^{-1}S^{-1}$, respectively. According to PL spectrum, the Al donor energy level depth ($E_d$) of Al-N codoped p-type ZnO film was reduced to about 51 meV, and the N acceptor energy level depth ($E_a$) was reduced to 63 meV, respectively.

  • PDF

Photoluminescence property of Al,N-codoped p-type ZnO films by dc magnetron sputtering

  • Jin, Hu-Jie;Liu, Yan-Yan;Park, Bok-Kee;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.419-420
    • /
    • 2008
  • In this study, high quality (Al,N)-codoped p-type ZnO thin films were obtained by DC magnetron sputtering. The film on buffer layer grown in 80% $N_2$ ambient shows highest hole concentration of $2.93\times10^{17}cm^{-3}$. The films show hole concentration in the range of $1.5\times10^{15}$ to $2.93\times10^{17}cm^{-3}$, resistivity of 131.2 to 2.864 $\Omega$cm, mobility of 3.99 to 31.6 $cm^2V^{-1}s^{-1}$. The films on Si show easier p-doping in ZnO than those on buffer layer. The film on Si shows the highest quality of optical photoluminescence (PL) characteristics. The donor energy level $(E_d)$ of (Al,N)-codoped ZnO films is about 50 meV and acceptor energy level $(E_a)$ is in the range of 63 to 71 meV. It will help to improve p-type ZnO films.

  • PDF