• Title/Summary/Keyword: n type Si

Search Result 866, Processing Time 0.031 seconds

Advanced IGBT structure for improved reliability (신뢰성 개선된 IGBT 소자 신구조)

  • Lee, Myoung Jin
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1193-1198
    • /
    • 2017
  • The IGBT structure developed in this paper is used as a high power switch semiconductor for DC transmission and distribution and it is expected that it will be used as an important electronic device for new and long distance DC transmission in the future by securing fast switching speed and improved breakdown voltage characteristic. As a new type of next generation power semiconductors, it is designed to improve the switching speed while at the same time improving the breakdown voltage characteristics, reducing power loss characteristics, and achieving high current density advantages at the same time. These improved properties were obtained by further introducing SiO2 into the N-drift region of the Planar IGBT and were compared and analyzed using the Sentaurus TCAD simulation tool.

Plasma-Sprayed $Al_2O_3-SiO_2$ Multi-Oxide Films on Stainless Steel Substrate

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.116-119
    • /
    • 2000
  • The advantage of plasma-sprayed coating is their good resistance against thermal shock due to the porous state of the coated layer with a consequently low Youngs modulus. However, the existence of many pores with a bimodal distribution and a laminar structure in the coating reduces coating strength and oxidation protection of the base metals. In order to counteract these problems, there have been many efforts to obtain dense coatings by spraying under low pressure or vacuum and by controlling particle size and morphology of the spraying materials. The aim of the present study is to survey the effects of the HIP treatment between 1100 and 130$0^{\circ}C$ on plasma-sprayed oxide coating of A1$_2$O$_3$, A1$_2$O$_3$-SiO$_2$on the metal substrate (type C18N10T stainless steel). These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing. These results show that high-pressure treatment has an advantage for improving adhesive strength and Vickers hardness of plasma-sprayed coatings.

  • PDF

A Fundamental Study of Selective Metal Electroplating Without Seed Layers Using a Photosensitive Polyimide as Molds (감광성 폴리이미드를 모울드로 이용한 기반층이 없는 선택적 금속 도금에 관한 기초 연구)

  • Ahn, Dong-Sup;Lee, Sang-Wook;Kim, Ho-Sung;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.204-206
    • /
    • 1993
  • In this paper we represented electroplating process without seed layers for making metal micro structures needed for applying terminal voltage for one-to-one cell fusion system. In this system, we need thick insulator and metal structures because the diameter of a cell is approximately $40{\mu}m$. So, we adopted the photo-sensitive polyimide as electroplating molds and structural material. Generally, the processes utilizing the photo-sensitive polyimide as molds have metal seed layers on the substrate as electroplating electrodes and requires wiring tasks to these seed layers. We proposed electroplating process without any seed layer on the Si-substrate and simulated P-N-P (electrode - Si substrate - electrode) junction on N-type silicon substrate. Leakage current from one metal structure to another which arise when terminal voltage is applied can be remarkably decreased by doping Boron in the region to be electroplated.

  • PDF

Study of Thermal Stability of Ni Silicide using Ni-V Alloy

  • Zhong, Zhun;Oh, Soon-Young;Lee, Won-Jae;Zhang, Ying-Ying;Jung, Soon-Yen;Li, Shi-Guang;Lee, Ga-Won;Wang, Jin-Suk;Lee, Hi-Deok;Kim, Yeong-Cheol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.47-51
    • /
    • 2008
  • In this paper, thermal stability of Nickel silicide formed on p-type silicon wafer using Ni-V alloy film was studied. As compared with pure Ni, Ni-V shows better thermal stability. The addition of Vanadium suppresses the phase transition of NiSi to $NiSi_2$ effectively. Ni-V single structure shows the best thermal stability compared with the other Ni-silicide using TiN and Co/TiN capping layers. To enhance the thermal stability up to $650^{\circ}C$ and find out the optimal thickness of Ni silicide, different thickness of Ni-V was also investigated in this work.

Plasma-Sprayed $Al_{2}O_{3}-SiO_{2}$ Multi-Oxide Films on Stainless Steel Substrate

  • Korobova, N.;Soh, Deawha
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.116-119
    • /
    • 2000
  • The advantage of plasma-sprayed coating is their good resistance against thermal shock due to the porous state of the coated layer with a consequently low Youngs modules. However, the existence of many pores with a bimodal distribution and a laminar structure in the coating reduces coating strength and oxidation protection of the base metals. In order to counteract these problems, there have been many efforts to obtain dense coatings by spraying under low pressure or vacuum and by controlling particle size and morphology of the spraying materials. The aim of the present study is to survey the effects of the HIP treatment between 1100 and 130$0^{\circ}C$ on plasma-sprayed oxide coating of A1$_2$O$_3$, A1$_2$O$_3$-SiO$_2$ on the metal substrate (type C18N10T stainless steel). These effects were characterized by phase identification, Vickers hardness measurement, and tensile test before and after HIPing, These results show that high-pressure treatment has an advantage for improving adhesive strength and Vickers hardness of plasma- sprayed coatings.

  • PDF

Tribological performance of the laser surface treated CrZrSiN thin films

  • Kim, DongJun;La, JoungHyun;Lee, SangYul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.141-142
    • /
    • 2012
  • Recently, surface texturing by atmospheric laser processing has been received lots of attention to improve the tribological performance of various surfaces and this laser texturing of surfaces could be considered in a large extent to improve tribological performance of PVD coated surface. Surface texturing could be performed by various manufacturing techniques such as indentation with hard materials, ion etching, abrasive jet machining, lithography, and Laser Surface Texturing (LST). Out of all these techniques, however it is generally accepted that laser surface texturing (LST) by atmospheric laser processing offers the most promising process as LST is very fast, environmentally-friendly, easy to control the shape and size of the microdimples. In this work various preliminary experimental results from the laser texturing on the PVD-coated steel substrate will be presented. Our results indicated that laser texturing definitely affect the tribological performance of the surfaces and the size as well as pattern type of laser texturing are one of the key factors. From the wear tests against an alumina counterpart ball at room temperature under oil-lubricated condition, laser surface texturing on the CrZrSiN films reduced the friction coefficients by approximately more than 5 times in the case of narrow patterned surfaces.

  • PDF

Pd/Si/Pd/Ti/Au Ohmic Contact for Application to AIGaAs/GaAs HBT (AlGaAs/GaAs HBT 응용을 위한 Pd/Si/Pd/Ti/Au 오믹 접촉)

  • 김일호;장경욱
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.4
    • /
    • pp.201-206
    • /
    • 2002
  • Pd/Si/Pd/Ti/Au ohmic contact to n-type InGaAs was investigated with rapid thermal annealing conditions. Minimum specific contact resistivity of $3.9\times10^{-7}\Omega\textrm{cm}^2$ was achieved at $400^{\circ}C$/20sec. This was related to the formation of Pd-Si compounds by rapid thermal annealing and the in-diffusion of Si atoms to InGaAs surface. However, the specific contact resistivity increased slightly to low-$10^{-6}\Omega \textrm{cm}^2$ at $400^{\circ}C$ for longer than 30 seconds, and to high-$10^{-7}$ at 425~$450^{\circ}C$ for 10 seconds. This resulted from the formation of Pd-Ga compounds. Superior ohmic contact and non-spiking planar interface between ohmic materials and InGaAs were maintained after annealing at high temperature. Therefore, this thermally stable ohmic contact system is a promising candidate for compound semiconductor devices.

전이금속이 도핑된 Si 박막의 열처리 효과에 따른 구조 및 자기적 성질

  • Seo, Ju-Yeong;Park, Sang-U;Lee, Gyeong-Su;Song, Hu-Yeong;Kim, Eun-Gyu;Son, Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.184-184
    • /
    • 2011
  • 반도체 전자 소자의 초고집적회로(VLSI, Very Large Scale Integrated Circuit)가 수년간 지속됨에 따라 실리콘 기반으로 하는 MOSFET 성능의 한계에 도달하게 되었다. 재료 물성, 축소, 소자 공정 등에 대한 원인으로 이를 극복하고자 하는 재료와 성능향상에 관한 연구가 진행되고 있다. 이에 기존 시스템의 전자의 전하 정보만을 응용하는 것이 아니라 전자의 스핀 정보까지 고려하는 스핀트로닉스 연구분야가 주목을 받고 있다. Spin-FET는 스핀 주입, 스핀 조절, 스핀측정 등으로 나뉘어 연구되고 있으며 이 중 스핀 주입의 효율 향상이 우선시 해결되어야 한다. 일반적으로 스핀 주입 과정에서 소스가 되는 강자성체와 스핀 확산 거리가 긴 반도체 물질과의 Conductance mismatch가 문제되고 있다. 이에 자성 반도체는 근본적인 문제를 해결하고 반도체와 자성체의 특성을 동시에 나타내는 물질로써, Si과 Ge (4족) 등의 반도체뿐만 아니라, GaAs, InP (3-5족), ZnO, ZnTe (2-6족) 등의 반도체 또한 많은 연구가 이루어지고 있다. 자성 반도체에서 해결해야 할 가장 큰 문제는 물질이 자성을 잃는 Curie 온도를 상온 이상으로 높이는 것이다. 이에 본 연구는 전이금속이 도핑된 4족 Si 반도체 박막을 성장하고 후처리 공정을 통하여 나타나는 구조적, 자기적 특성을 연구하였다. 펄스 레이저 증착 방법을 통하여 p-type Si 기판위에 전이금속 Fe이 도핑된 박막을 500 nm 로 성장하였다. 성장 온도는 $250^{\circ}C$로 하였고, 성장 분압은 $3 {\times}10^{-3}$Torr 로 유지하며 $N_2$ 가스를 사용하였다. 구조적 결과를 보기 위해 X선 회절 분석과 원자력 현미경 결과를 확인하였고, 자기적 특성을 확인하기 위해 저온에서 초전도 양자 간섭계로 조사하였다. XRD를 통해 (002)면, (004)면의 Si 기판 결정을 보았으며, Fe 관련된 이차상이 형성됨을 예측해 보았다. ($Fe_3Si$, $Fe_2Si$ 등) 초전도 양자 간섭계에서 20 K에서 측정한 이력 현상을 관찰하고, 온도변화에 따른 전체 자기모멘트를 관찰하였으며 이는 상온에서도 강자성 특성이 나타남을 확인하였다.

  • PDF

Evaluation of Bifacial Si Solar Module with Different Albedo Conditions (양면수광형 실리콘 태양광 모듈의 바닥면 반사조건 변화에 따른 발전성능 평가)

  • Park, Dohyun;Kim, Minsu;So, Wonshoup;Oh, Soo-Young;Park, Hyeonwook;Jang, Sungho;Park, Sang-Hwan;Kim, Woo Kyoung
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.62-67
    • /
    • 2018
  • Multi-wire busbar-type bifacial n-type Si solar cells have been used for the fabrication of monofacial and bifacial photovoltaic (PV) module, where bifacial module was equipped with transparent backsheet while monofacial module was prepared using white backsheet. The comparison of six-day accumulated power production obtained from outdoor test under gray cement ground conditions using 60cell monofacial and bifacial PV modules suggested the bifacial gain of over 20% could be achieved. Furthermore, the outdoor evaluation tests of bifacial modules with different ground conditions such as cement (reference), green paint, white paint and green artificial grass, were performed. It turned out white paint showed the best albedo and thus the highest power production, while green paint and artificial grass showed less power generation than cement ground.

Frequency Response Estimation of 1.3 ㎛ Waveguide Integrated Vertical PIN Type Ge-on-Si Photodetector Based on the Analysis of Fringing Field in Intrinsic Region

  • Seo, Dongjun;Kwon, Won-Bae;Kim, Sung Chang;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.510-515
    • /
    • 2019
  • In this paper, we introduce a 1.3-㎛ 25-GHz waveguide-integrated vertical PIN type Ge-on-Si photodetector fabricated using a multi-project wafers service based on fringing field analysis in the depletion region. In general, 1.3-㎛ photodetectors fabricated using a commercial foundry service can achieve limited bandwidths because a significant amount of photo-generated carriers are located within a few microns from the input along the device length, and they are influenced by the fringing field, leading to a longer transit time. To estimate the response time, we calculate the fringing field in that region and the transit time using the drift velocity caused by the field. Finally, we compare the estimated value with the measured one. The photodetector fabricated has a bandwidth of 20.75 GHz at -1 V with an estimation error of <3 GHz and dark current and responsivity of 110 nA and 0.704 A/W, respectively.