• 제목/요약/키워드: multivariate normal distribution

검색결과 104건 처리시간 0.019초

Gibbs Sampling for Double Seasonal Autoregressive Models

  • Amin, Ayman A.;Ismail, Mohamed A.
    • Communications for Statistical Applications and Methods
    • /
    • 제22권6호
    • /
    • pp.557-573
    • /
    • 2015
  • In this paper we develop a Bayesian inference for a multiplicative double seasonal autoregressive (DSAR) model by implementing a fast, easy and accurate Gibbs sampling algorithm. We apply the Gibbs sampling to approximate empirically the marginal posterior distributions after showing that the conditional posterior distribution of the model parameters and the variance are multivariate normal and inverse gamma, respectively. The proposed Bayesian methodology is illustrated using simulated examples and real-world time series data.

다변량 정규분포에서의 선발효과(I): 유전편차의 비율에 대하여 (Genetic Selection Problems under Multivariate Normal Distribution)

  • 신한풍
    • Journal of the Korean Statistical Society
    • /
    • 제3권1호
    • /
    • pp.59-63
    • /
    • 1974
  • 표현형 변수 Y가 유전변수 X와 환경변수 E로 표시되고 X와 E가 상호독립이며 각각 다음과 같은 정규분포를 한다고 하자. $$X\simN(\mu,\sigma^2), E\simN)0,\omega^2)$$ 대체로 $Y \geq y$이거나 $Y \leq y$인 형태일 때 유전 및 육동적 선발은 Y=X+E의 형태로 나타난다. 롭슨[3]은 선발을 반복하였을 때 유전변수 X의 평균기대치와 유전변수 X의 조건부분포의 영향을 연구하였고 이와같은 일변량분포의 경우 선발의 효과는 전분산에 대한 유전분산의 비에 달려있다 하였다. 이러한 선발모형을 p-차원 공간에 적용하면 유전편차의 비율을 구할 수 있다.

  • PDF

A Hill-Sliding Strategy for Initialization of Gaussian Clusters in the Multidimensional Space

  • Park, J.Kyoungyoon;Chen, Yung-H.;Simons, Daryl-B.;Miller, Lee-D.
    • 대한원격탐사학회지
    • /
    • 제1권1호
    • /
    • pp.5-27
    • /
    • 1985
  • A hill-sliding technique was devised to extract Gaussian clusters from the multivariate probability density estimates of sample data for the first step of iterative unsupervised classification. The underlying assumption in this approach was that each cluster possessed a unimodal normal distribution. The key idea was that a clustering function proposed could distinguish elements of a cluster under formation from the rest in the feature space. Initial clusters were extracted one by one according to the hill-sliding tactics. A dimensionless cluster compactness parameter was proposed as a universal measure of cluster goodness and used satisfactorily in test runs with Landsat multispectral scanner (MSS) data. The normalized divergence, defined by the cluster divergence divided by the entropy of the entire sample data, was utilized as a general separability measure between clusters. An overall clustering objective function was set forth in terms of cluster covariance matrices, from which the cluster compactness measure could be deduced. Minimal improvement of initial data partitioning was evaluated by this objective function in eliminating scattered sparse data points. The hill-sliding clustering technique developed herein has the potential applicability to decomposition of any multivariate mixture distribution into a number of unimodal distributions when an appropriate diatribution function to the data set is employed.

가능도 함수를 기초로 한 다변량 정규성 검정 (A Test of the Multivariate Normality Based on Likelihood Functions)

  • 여인권
    • 응용통계연구
    • /
    • 제15권2호
    • /
    • pp.223-232
    • /
    • 2002
  • 이 논문에서는 비선형 변환과 가능도 함수를 이용하여 다변량 자료의 정규성을 검정하는 방법에 대해 알아본다. 사용된 변환은 변환모수에 따라 여러 가지 형태를 가지는 변환족을 구성하는데 이 변환모수를 검정하여 자료의 정규성을 검정한다. 모수의 검정은 점수함수(score function)을 기초로 이루어지며 표본크기가 적은 경우에도 검정통계량의 분포를 유도하기 위한 모수적 붓스트랩 검정방법이 사용된다. 모의실험 결과 기존의 방법과 검정력을 비교하여 제안된 방법이 검정력이 높은 것으로 나타났다.

다변량 조건부 꼬리 기대값 (Multivariate conditional tail expectations)

  • 홍종선;김태우
    • 응용통계연구
    • /
    • 제29권7호
    • /
    • pp.1201-1212
    • /
    • 2016
  • 시장위험 관리를 위한 Value at Risk(VaR)는 금융기관들이 선호하는 기법이지만, 투자가 실패한 경우에 손실금액에 대하여는 설명할 수 없다는 문제점이 있다. VaR의 한계를 보완하는 대안적인 위험측정도구인 Conditional Tail Expectation(CTE)는 VaR를 초과하는 조건부 기대값으로 정의된다. 포트폴리오에 대한 CTE를 추정하는 실제금융시장에서는. 일반적으로는 다변량 손실률을 일변량 분포로 변환하여 VaR을 추정하고 CTE를 구하지만, 본 연구에서는 다차원 분위벡터를 이용하여 다변량 CTE들을 제안한다. 그리고 일변량 CTE들의 관계를 확장하여 다변량 CTE들의 관계식을 유도하였다. 다양한 분산-공분산행렬을 갖는 이변량과 삼변량의 정규분포로부터 다변량 CTE들을 구하고 CTE들의 관계식을 구현하면서 고차원 분포로의 확장 가능성을 설명하였다. 이변량과 삼변량의 실증 예제를 통해 제안한 이론을 탐색하고, 기존의 CTE와 비교하였다. 다변량 변수들의 분산-공분산행렬과 다변량 분위벡터를 사용한 다변량 CTE가 일변량으로 변환하여 구한 CTE보다 작은 값을 갖는 것을 발견하였다. 그러므로 본 연구에서 제안한 다변량 CTE는 보다 적은 위험성을 나타내는 추정량이며, 포트폴리오를 구성하는 여러 기업을 동시에 고려하는 분산 투자 전략을 세우는 경우에 이런 다변량 CTE를 사용하는 적극적인 투자가 가능하다는 장점이 있다.

왜정규 위험요인 기반 포트폴리오 위험측도에 대한 안장점근사 (Saddlepoint approximations for the risk measures of portfolios based on skew-normal risk factors)

  • 유혜경;나종화
    • Journal of the Korean Data and Information Science Society
    • /
    • 제25권6호
    • /
    • pp.1171-1180
    • /
    • 2014
  • 본 논문에서는 금융분야에서 사용되고 있는 포트폴리오 위험측도인 VaR (value at risk)와 ES (expected shortfall)의 측정 방법으로 안장점근사의 적용 방법을 제시하였다. 본 연구의 특징은 금융자료에 대하여 정규분포를 가정하지 않고, 치우침을 가정한 왜정규분포를 가정하여 왜정규분포를 따르는 위험요인으로 구성된 선형 포트폴리오 위험측도에 대해 안장점근사를 실시하였다. 또한 모의실험을 통해 위험측도의 안장점근사의 정도가 매우 우수함을 확인하였다.

이변량 지역빈도해석을 이용한 우리나라 극한 강우 분석 (Bivariate regional frequency analysis of extreme rainfalls in Korea)

  • 신주영;정창삼;안현준;허준행
    • 한국수자원학회논문집
    • /
    • 제51권9호
    • /
    • pp.747-759
    • /
    • 2018
  • 다변량 빈도해석과 지역빈도해석의 장점을 동시에 가지는 다변량 지역빈도해석은 다양한 변수를 고려함으로써 수문 현상에 대하여 많은 정보를 얻을 수 있고 많은 가용 자료 수로 인하여 높은 정확도의 분석결과를 도출할 수 있다. 현재까지는 우리나라의 강우 자료를 이용하여 다변량 지역빈도해석이 시도된 적이 없어 국내의 강우 자료를 대상으로 다변량 지역빈도해석의 적용성을 검토할 필요가 있다. 본 연구에서는 다변량 지역빈도해석의 매개변수 추정, 최적 분포형 선정, 확률수문량 성장곡선 추정 등에 집중하여 이변량 수문자료인 연 최대 강우량-지속기간 자료에 대하여 이변량 지역빈도해석의 적용성을 평가하였다. 기상청 71개 지점에 대하여 분석을 실시하였다. 본 연구를 통해 적용된 지역강우자료의 최적 copula 모형으로는 Frank와 Gumbel copula 모형이 선택되었고 주변분포형에 대해서는 지역별로 Gumbel과 대수정규분포와 같은 다양한 분포형이 최적 분포형으로 선택되었다. 상대제곱근오차(relative root mean square error)를 기준으로 지역빈도해석이 지점빈도해석보다 안정적이고 정확한 확률수문량 곡선 추정을 하였다. 이변량 강우분석에서 지역빈도해석을 적용하면 안정적인 수공구조물 설계기준 제시와 강우-지속기간 관계를 모형화 할 수 있을 것으로 기대된다.

TESTS FOR VARYING-COEFFICIENT PARTS ON VARYING-COEFFICIENT SINGLE-INDEX MODEL

  • Huang, Zhensheng;Zhang, Riquan
    • 대한수학회지
    • /
    • 제47권2호
    • /
    • pp.385-407
    • /
    • 2010
  • To study the relationship between the levels of chemical pollutants and the number of daily total hospital admissions for respiratory diseases and to find the effect of temperature/relative humidity on the admission number, Wong et al. [17] introduced the varying-coefficient single-index model (VCSIM). As pointed out, it is a popular multivariate nonparametric fitting technique. However, the tests of the model have not been very well developed. In this paper, based on the estimators obtained by the local linear technique, the average method and the one-step back-fitting technique in the VCSIM, the generalized likelihood ratio (GLR) tests for varying-coefficient parts on the VCSIM are established. Under the null hypotheses the new proposed GLR tests follow the $\chi^2$-distribution asymptotically with scale constant and degree of freedom independent of the nuisance parameters, known as Wilks phenomenon. Simulations are conducted to evaluate the test procedure empirically. A real example is used to illustrate the performance of the testing approach.

Distance between the Distributions of the P-value and the Lower Bound of the Posterior Probability

  • Oh, Hyun-Sook
    • Communications for Statistical Applications and Methods
    • /
    • 제6권1호
    • /
    • pp.237-249
    • /
    • 1999
  • It has been issued that the irreconcilability of the classical test for a point null and standard Bayesian formulation for testing such a point null. The infimum of the posterior probability of the null hypothesis is used as measure of evidence against the null hypothesis in Bayesian approach; here the infimum is over the family of priors on the alternative hypotheses which includes all density that are a priori reasonable. For iid observations from a multivariate normal distribution in $\textit{p}$ dimensions with an unknown mean and a covariance matrix propotional to the Identity we consider the difference and the Wolfowitz distance of the distributions of the P-value and the lower bound of the posterior probability over the family of all normal priors. The Wolfowitz distance is interpreted as the average difference of the quantiles of the two distrbutions.

  • PDF