Communications for Statistical Applications and Methods
/
제22권6호
/
pp.557-573
/
2015
In this paper we develop a Bayesian inference for a multiplicative double seasonal autoregressive (DSAR) model by implementing a fast, easy and accurate Gibbs sampling algorithm. We apply the Gibbs sampling to approximate empirically the marginal posterior distributions after showing that the conditional posterior distribution of the model parameters and the variance are multivariate normal and inverse gamma, respectively. The proposed Bayesian methodology is illustrated using simulated examples and real-world time series data.
표현형 변수 Y가 유전변수 X와 환경변수 E로 표시되고 X와 E가 상호독립이며 각각 다음과 같은 정규분포를 한다고 하자. $$X\simN(\mu,\sigma^2), E\simN)0,\omega^2)$$ 대체로 $Y \geq y$이거나 $Y \leq y$인 형태일 때 유전 및 육동적 선발은 Y=X+E의 형태로 나타난다. 롭슨[3]은 선발을 반복하였을 때 유전변수 X의 평균기대치와 유전변수 X의 조건부분포의 영향을 연구하였고 이와같은 일변량분포의 경우 선발의 효과는 전분산에 대한 유전분산의 비에 달려있다 하였다. 이러한 선발모형을 p-차원 공간에 적용하면 유전편차의 비율을 구할 수 있다.
Park, J.Kyoungyoon;Chen, Yung-H.;Simons, Daryl-B.;Miller, Lee-D.
대한원격탐사학회지
/
제1권1호
/
pp.5-27
/
1985
A hill-sliding technique was devised to extract Gaussian clusters from the multivariate probability density estimates of sample data for the first step of iterative unsupervised classification. The underlying assumption in this approach was that each cluster possessed a unimodal normal distribution. The key idea was that a clustering function proposed could distinguish elements of a cluster under formation from the rest in the feature space. Initial clusters were extracted one by one according to the hill-sliding tactics. A dimensionless cluster compactness parameter was proposed as a universal measure of cluster goodness and used satisfactorily in test runs with Landsat multispectral scanner (MSS) data. The normalized divergence, defined by the cluster divergence divided by the entropy of the entire sample data, was utilized as a general separability measure between clusters. An overall clustering objective function was set forth in terms of cluster covariance matrices, from which the cluster compactness measure could be deduced. Minimal improvement of initial data partitioning was evaluated by this objective function in eliminating scattered sparse data points. The hill-sliding clustering technique developed herein has the potential applicability to decomposition of any multivariate mixture distribution into a number of unimodal distributions when an appropriate diatribution function to the data set is employed.
이 논문에서는 비선형 변환과 가능도 함수를 이용하여 다변량 자료의 정규성을 검정하는 방법에 대해 알아본다. 사용된 변환은 변환모수에 따라 여러 가지 형태를 가지는 변환족을 구성하는데 이 변환모수를 검정하여 자료의 정규성을 검정한다. 모수의 검정은 점수함수(score function)을 기초로 이루어지며 표본크기가 적은 경우에도 검정통계량의 분포를 유도하기 위한 모수적 붓스트랩 검정방법이 사용된다. 모의실험 결과 기존의 방법과 검정력을 비교하여 제안된 방법이 검정력이 높은 것으로 나타났다.
시장위험 관리를 위한 Value at Risk(VaR)는 금융기관들이 선호하는 기법이지만, 투자가 실패한 경우에 손실금액에 대하여는 설명할 수 없다는 문제점이 있다. VaR의 한계를 보완하는 대안적인 위험측정도구인 Conditional Tail Expectation(CTE)는 VaR를 초과하는 조건부 기대값으로 정의된다. 포트폴리오에 대한 CTE를 추정하는 실제금융시장에서는. 일반적으로는 다변량 손실률을 일변량 분포로 변환하여 VaR을 추정하고 CTE를 구하지만, 본 연구에서는 다차원 분위벡터를 이용하여 다변량 CTE들을 제안한다. 그리고 일변량 CTE들의 관계를 확장하여 다변량 CTE들의 관계식을 유도하였다. 다양한 분산-공분산행렬을 갖는 이변량과 삼변량의 정규분포로부터 다변량 CTE들을 구하고 CTE들의 관계식을 구현하면서 고차원 분포로의 확장 가능성을 설명하였다. 이변량과 삼변량의 실증 예제를 통해 제안한 이론을 탐색하고, 기존의 CTE와 비교하였다. 다변량 변수들의 분산-공분산행렬과 다변량 분위벡터를 사용한 다변량 CTE가 일변량으로 변환하여 구한 CTE보다 작은 값을 갖는 것을 발견하였다. 그러므로 본 연구에서 제안한 다변량 CTE는 보다 적은 위험성을 나타내는 추정량이며, 포트폴리오를 구성하는 여러 기업을 동시에 고려하는 분산 투자 전략을 세우는 경우에 이런 다변량 CTE를 사용하는 적극적인 투자가 가능하다는 장점이 있다.
Journal of the Korean Data and Information Science Society
/
제25권6호
/
pp.1171-1180
/
2014
본 논문에서는 금융분야에서 사용되고 있는 포트폴리오 위험측도인 VaR (value at risk)와 ES (expected shortfall)의 측정 방법으로 안장점근사의 적용 방법을 제시하였다. 본 연구의 특징은 금융자료에 대하여 정규분포를 가정하지 않고, 치우침을 가정한 왜정규분포를 가정하여 왜정규분포를 따르는 위험요인으로 구성된 선형 포트폴리오 위험측도에 대해 안장점근사를 실시하였다. 또한 모의실험을 통해 위험측도의 안장점근사의 정도가 매우 우수함을 확인하였다.
다변량 빈도해석과 지역빈도해석의 장점을 동시에 가지는 다변량 지역빈도해석은 다양한 변수를 고려함으로써 수문 현상에 대하여 많은 정보를 얻을 수 있고 많은 가용 자료 수로 인하여 높은 정확도의 분석결과를 도출할 수 있다. 현재까지는 우리나라의 강우 자료를 이용하여 다변량 지역빈도해석이 시도된 적이 없어 국내의 강우 자료를 대상으로 다변량 지역빈도해석의 적용성을 검토할 필요가 있다. 본 연구에서는 다변량 지역빈도해석의 매개변수 추정, 최적 분포형 선정, 확률수문량 성장곡선 추정 등에 집중하여 이변량 수문자료인 연 최대 강우량-지속기간 자료에 대하여 이변량 지역빈도해석의 적용성을 평가하였다. 기상청 71개 지점에 대하여 분석을 실시하였다. 본 연구를 통해 적용된 지역강우자료의 최적 copula 모형으로는 Frank와 Gumbel copula 모형이 선택되었고 주변분포형에 대해서는 지역별로 Gumbel과 대수정규분포와 같은 다양한 분포형이 최적 분포형으로 선택되었다. 상대제곱근오차(relative root mean square error)를 기준으로 지역빈도해석이 지점빈도해석보다 안정적이고 정확한 확률수문량 곡선 추정을 하였다. 이변량 강우분석에서 지역빈도해석을 적용하면 안정적인 수공구조물 설계기준 제시와 강우-지속기간 관계를 모형화 할 수 있을 것으로 기대된다.
To study the relationship between the levels of chemical pollutants and the number of daily total hospital admissions for respiratory diseases and to find the effect of temperature/relative humidity on the admission number, Wong et al. [17] introduced the varying-coefficient single-index model (VCSIM). As pointed out, it is a popular multivariate nonparametric fitting technique. However, the tests of the model have not been very well developed. In this paper, based on the estimators obtained by the local linear technique, the average method and the one-step back-fitting technique in the VCSIM, the generalized likelihood ratio (GLR) tests for varying-coefficient parts on the VCSIM are established. Under the null hypotheses the new proposed GLR tests follow the $\chi^2$-distribution asymptotically with scale constant and degree of freedom independent of the nuisance parameters, known as Wilks phenomenon. Simulations are conducted to evaluate the test procedure empirically. A real example is used to illustrate the performance of the testing approach.
Communications for Statistical Applications and Methods
/
제6권1호
/
pp.237-249
/
1999
It has been issued that the irreconcilability of the classical test for a point null and standard Bayesian formulation for testing such a point null. The infimum of the posterior probability of the null hypothesis is used as measure of evidence against the null hypothesis in Bayesian approach; here the infimum is over the family of priors on the alternative hypotheses which includes all density that are a priori reasonable. For iid observations from a multivariate normal distribution in $\textit{p}$ dimensions with an unknown mean and a covariance matrix propotional to the Identity we consider the difference and the Wolfowitz distance of the distributions of the P-value and the lower bound of the posterior probability over the family of all normal priors. The Wolfowitz distance is interpreted as the average difference of the quantiles of the two distrbutions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.