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Abstract

A hill-sliding technique was devised to extract Gaussian clusters from the multivariate proba-
bility density estimates of sample data for the first step of iterative unsupervised classification.
The underlying assumption in this approach was that each cluster possessed a unimodal normal
distribution. The key idea was that a clustering function proposed could dist}nguish elements of
a cluster under formation from the vrest in the feature space. Initial clusters were extracted one by
one according to the hill-sliding tactics.

A dimensionless cluster compactness parameter was proposed as a univgrsal measure of cluster
goodness and used satisfactorily in test runs with Landsat multispectral scanner (MSS) data. The
normalized divergence, defined by the cluster divergence divided by the entropy of the entire

sample data, was utilized as a general separability measure between clusters. An overall clustering

» This paper was presented at the Joint Soil and Machine Processing of Remotely Sensed Data Symposia,
Purdue University, West Lafayette, Indiana, June 3-6, 1980.
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objective function was set forth in terms of cluster covariance matrices, from which the cluster
compactness measure could be deduced. Minimal improvement of initial data partitioning was
evaluated by this objective function in eliminating scattered sparse data points. The hill-sliding
clustering technique developed herein has the potential applicability te decomposition of any

multivariate mixture distribution into a number of unimodal distributions when an appropriate

distribution function to the data set is employed.

1. Introduction .

Many diverse techniques have been devised to discover structure within complex bodies of
data by unsupervised fashion, i.e., cluster analysis (Ball, 1965; Cormack, 1971; Anderberg, 1973;
Duran etal 1974; Everitt, 1974). The techniques attempt to group data points, usually in a
multidimensional space, into cluster such that all points within a cluster possess intrinsic similarity
relatively distinct from the others.

Hence, application of the techniques‘ to the data often reveals unexpected ‘characteri/stics
inhibited in the data structure. But it has often suffered from lack of adequate mathematical
description, and either too many suboptimal solutions, or requirements of astronomical enumer-
ations, in the course of searching for the optimal solution.

The objective of this paper was to present an approach for extraction of Gaussian clusters using
discrete probability density estimates as the first step for an iterative unsupervised classification,
The approach is based on the presumption that there are parts of the feature space in which data
populations are very dense, separated by parts of low density. An attempt was made to devise a
method suitable for processing a moderate volume of multivariate measurements, such as satellite

multispectral scanner (MSS) data.

II. Parameterization for Clustering Function

Clustering is often the first step in analyzing a set of data whose characteristics have not yet
been revealed. It is common to begin with the assumption of normal distribution if no knowledge
about the data structure is available. In multivariate mixture distribution, the normality means
multimodal Gaussian distribution in multidimensional space. Data surrounding each mode can be
interpreted as a cluster. A group of data representing a real class may consist of two or more

unimodal clusters and have multimodal distribution. Such data are divided into two or more



HILL-SLIDING STRATEGY 7

subgroups so that the unimodal distribution can be applied to each subgroup.
Under the assumption of unimodal normality in a cluster, the probability density function is

given by (Duda and Hart 1973)

b (®) = : e — )T O EA) e (1)

em® It

where P, =a priori probability of cluster i (Wi)
Ci = d-by-d covariance matrix of cluster i
Ci‘1 = inverse of the covariance matrix ¢
X = pattern (d-component column) vector
K = mean vector of patterns of cluster i
( )T = tranpose of a matrix
d = dimension of feature space (integer)
e = base of natural logarithm.

This is the muliivariate normal distribution function for the cluster called “w i”. The clustering

process is carried out by finding all sets of cluster parameters: mean vector M, covariance matrix Ci
=N

and a priori probability Pi for all the clusters. For a given set of N measurements, X = {zgn]r;_1 R

the multivariate mixture probability p(x) may be estimated and then postulated as the sum of all

the cluster probabilities p; (x):

p(x) = Z' pi(x),
all i

................................................................................................ 2)
It may be computed from discrete measurement data by
R sum of population in a volume element AV (or cell) (3)
p(&) 5 .................................

total population (N)

This is the probability density of the mixture of all probable clusters. Decomposition of the
mixture probability into a set of subgroups having unimodal distribution is the task of the cluster-

ing process. It is intuitive to divide the region into two parts by the boundary where

P (B) = Pj (R, 1 5 J e 4)
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Furthermore, it is likely to declare that x belongs to the clusteri(i.e., )_(ewi) if
p;(x) >pj (X) FOT AL FET covreieeeriectescteesteesees e cse e ee s tr e st e e ete s s teaase seesebeeantesta seeeaaeannenan (5)

and, otherwise, x does not belong to the cluster i (i.e., x&Z wi). This is the maximum likelihood
classification or decision rule (Duda ez al. 1975). The region Ri is defined by the subspace where
the inequality (Eq. 5) is satisfied. This intuition will be exploited to extract a cluster from the
data set by a clustering function proposed as

p(x)

G () = N o e e e e ee e e s e e s e e aa b e ae et veaee vtn seae et n et e ratanaaes (6)
@

where ¢n denotes natural logarithm.

The usefulness of the clustering function for the maximum likelihood decision rule may be seen

in the following properties:

1. Gi (x) = 0 for the distribution of a single (unmixed) class, .........cccccoceiiiieinnnnes. (7

2. Gi (x) 220 for any mixture distribution of two or more different clusters, ........... (8)

3. For a two-cluster mixture distribution,

a, Gl (x)= G2(>_() = {n2 on the boundary between the clusters,  .................. 9)
b. G.(xe Ri) < n2
i P AT L2 e (10)
G; (KGERi) > n2
PROOF:
1. It is evident by the definition since p(x) = p; (x) for the single class data,
2 20 =3 p &
allj
then, ®
p X
Gi(;) = fn p; ® = 0. (g.ed.)

3a. On the boundary between the two clusters,
Py (x) = py(x) = p; (%)
p1{x) +py(x) 2p; (%)
n ——

= fn
p; (x) p; (x)

G; (x) = n2 for i=12.



HILL-SLIDING STRATEGY 9

That is,
G1 x) = G2 (x) = n2. (q.e.d.)

3b. Let i ¥ j. And the maximum likelihood decision rule shows

p; (EERi) > Pj (LERi).
Therefore,

p; (x&R) + p; (xER)

G, (xR = &n

p; (x€Ry)
1 + ..............................................................
p; (x&Ry)

= ¢n

< fn2.

Similarly, for the two-cluster mixture

pj (E@Ri) =P (EERJ) < pj (ZERJ) = pj (lgRj)'

G; (xZR)) = fn I} + B (LeRi)}

P; (leRi)
> n2. (g.e.d))

The last property of the clustering function suggests that a feature space R can be divided
into two regions: 1) a region belonging to cluster i and 2) another out of the region, in the case

of two-cluster mixture, as such x € w; (cluster 1) if

Gi(X) N2 (12)
and otherwise, x w;. This criterion will be utilized in this study for the extraction of one-cluster
data from the whole set of data. It requires only knowledge of a set of the parameters for a
single cluster each time. Elements of a prospective cluster can be extracted from the set of data

without knowing characteristics of the other clusters based on this criterion. This fact is the

beauty of the clustering function G i (x).

1II. Hill-Sliding Strategy

The clustering function, however, cannot be evaluated unless the set of cluster characteristic
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parameters are estimated. The first problem in clustering is to find good initial estimates of the
parameters employed in most cases. It is intuitively viewed that a cluster has émode, which has
the highest probability density in the cluster. The location of a cluster mode depends on the
characteristics of distribution type or governing law of the distribution, but it is usually observed

near the gravitational center (centroid) of the cluster (Fig. 1).
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MSS Band 6

Bivariate Population Distribution of 400 Landsat Data and
the First Three Most Probable Candidates for Modes of Clusters
(in circles). These typical example data were taken from the
Landsat data over a portion of Korean west coast (Park and
Miller 1978). The numbers are occurrences of bivariate data
in each block formed by both discrete MSS bands 6 and 7
data. Visually, three clusters and their probable mode po-
sitions were distinguished without difficulty.

=1
@
—

Suppose this presumption is acceptable in a set of data to be analyzed. Then at least one
candidate mode which has the highest probability density can be picked up. Such a mode initiates
the first clustering by fusing all probability cell points that may be categorized into one cluster.

A major problem faced in clustering is that the types of data distribution are generally not
known in advance; thus each cluster may have a different characteristic shape in its distribution.
Due to the absence of prior knowledge on characteristics of expected clusters, each cluster was
initiated with the assumption of isotropic normal distribution, at least in the immediate neighbor-
hood of a mdde candidate. The group of data initially coalesced into a cluster reflects the distri-
bution characteristics of the forming cluster in some degree since the theoretical shape of its
probability contour surface maintains near the mode as well as throughout the region of a cluster.
Distortion of its shape may be observed usually in the regions of its tails or valleys where distri-
butions are affected by neighbor clusters. A simple Euclidean distance measﬁre between measure-

ment points can be used in clustering data near an apparent centroid without introducing large



HILL-SLIDING STRATEGY 11

trial errors. The question is where to terminate the fusing process to avoid picking up data points
probably originated fromdifferent clusters. The values of parameters for termination of initial
fusion process are threshold values of cllistering.

One of the threshold parameters is derived in d-variate space. A differentiél volume AV(r)

at radius r from a cluster center is defined by

AV(E) & 1 AT e oo (13)

where Ar is a small segment of the radius r and symbol o denotes the proportionality. This
differential volume can be viewed as a hyper-shell (called simply shell hereafter) enclosed by two
concentric hyperspherical surfaces (Fig. 2). A series of concentric shells around a mode are drawn
with increasing r by Ar. The number of cluster elements, AN (r2), in a shell is proportional to the
volume of the shell multiplied by average population density in the shell:
2
AN@GE?) xcexp ( — %T)AV(r) .................................................................................... (14)

The exponential term in Eq. 14 is that of an isotropic normal distribution with standard devia-

tion ¢. This relation can be rearranged by employing squared radious 2 as

Example Shell Volumes:
AV4.d o3 Or q? A
Avigxr? Aracr Af?
AV,q&r Ar« Af?
AVl-doc Ar « Ar*n

Fig. 2. A Differential Volume (Hyperspherical Shell) in Three-
Dimensional Space. Example formulas are given for one-
through four-dimensional shells.  Subscript i-d denotes i-
dimension.

_ N
- exp -
-2 Ar?

where the term in the left-hand side is a generalized mean population density in a shell at
distance r. The parameter o? is the variance in the population distribution. The right-hand side
of this relationship is a monotonically decreasing function with increasing r? (Fig. 3).

AN
Plots of £n ( ) vs. 12 may reveal a family of straight lines having the slope of ———

42 A2 202
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(Fig. 3b). A group of data can be considered as originating from the same class if the estimates

(a) (b)

Fig. 3. A Curve of Eq. 15 and Data of a Hypothetical Two-Cluster Mixture. Data of a unimodal isotro-
pic distribution yields an exponential curve shown in (a). Discrete data of a two-cluster mixture
may produce a plot shown in (b), where two straight lines are approximate moving averages of

- two parts divided by rt2. The first straight line represents the population distribution of the

first cluster with the parameter 01".’ rt2 will be used as a threshold value for the cluster.

X2
Fig. 4. Contours of a Mixture Probability Density
Function (or Population Distribution) in a
Two-Dimensional Feature Space. The mixture
p-d.f. consists of three unimodal p.d.f.’s. A,
B and C points are the modes of the clusters.

or 1, may be one of the threshold values

Tia OT Iip
estimated by the method shown in Fig. 3(b).
They are interpreted as the shortest Euclidean
distance to a valley, which is the natural
boundary between the cluster and its neigh-

bor one.

X1

of shell population densities fall near a straight line. The slope of shell population data will remain
fairly constant near the center of a cluster, but may change significantly when populations of
other clusters enter into the shell. The squared radius at which the first significant change of the
slope is detécted is the threshold value (r%) for initiation of clustering. Such a change occurs
when the sequéntial searching point attempts to cross a valley and then to climb a hill consisting
of other cluster data (Fig. 4).

There are several possibilities which may introduce slope changes in the case of anistropic
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distribution of the data. A plot of two-dimensional population distribution will be utilized to
visualize some of these causes (Fig. 4). One of them is the case where a cluster is well separated
from the others even though the isotropic assumption is employed and the threshold value covers
nearly the whole region where most of cluster data are located (for example, cluster A in Fig. 4).
Another case is when the group of one-cluster data are closely neighbored with the others (for

example, cluster B in Fig. 4). Considerable overlaps between clusters may exist in this case.

The threshold value r% was given by the largest value of 12 satisfying that

0(%) <MD (0, 0)  cooooeeeceiiimss s mss st s (16)
where
_ 1
0 = - —
20%
= L n d%N ............................................................................. (17)
r? 1% Ar?
0 ¢ = 0+ f() Sy
and
(] c = updated critical slope up to the previous estimate
8 = updated average slope of all previous estimates
fG = positive empirical constant (about 2)
Sg = updated standard deviation of 6.

The first criterion (8 < 8 c) given in Eq. 16 prevents other cluster cells from merging into the
cluster under formation. The second criterion (§ < 0) distinguishes the cluster cells from the
others which may cause violation of the normal distribution laws when they merge into the
clusters. Values of the slope parameter must be less than zero for normally distributed data.
Once the threshold value is found, a new initial cluster is formed by fusing cells closer than the
distance corresponding to the threshold value. This initial cluster leads to computation of a set

of parameters which will characterize the early stage of the cluster.
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IV. Updating the Initial Cluster

A group of data immediately surrounding (i.e., within the threshold value rg from) a mode
candidate formed an initial cluster under the assumption of the isotropic normal distribution.
The parameters estimated for this initial cluster reflects to a certain degree the distribution char-
acteristics even at its early stage, since the shape of its probability contour is retained throughout
all the region of a cluster.. Hence, the isotropic assumption is no further needed when the cluster-
ing function given by Eq. 6 is evaluated.

To compute the clustering function, the a priori probability of the cluster should be known
as well as the other parameters. It is one of trhe uncertain parameters especially at this very initial

step. The a priori probability of a cluster in the mixture distribution is computed by

population in cluster i

total population

This value changes whenever any data are merged into or deleted from a cluster. Other chang-
ing parameters are the position vector of the cluster centroid (mean) and covariance matrix. All
of these parameters as well as random components of the data, contribute to fluctuation of Gi
estimates. ‘

It was shown that the expected value of the clustering function would be smaller than ¢n2
for any cell data within a well-defined cluster region. Values of Gi()_() computed at this stage,
however, may not be close to those expected at the final stage. They may range from negative to
large positive values mainly because initial estimates of cluster characteristic parameters deviate

from reasonable values and/or because the data contain random or noisy components.

To allow for a certain level of fluctuations in Gi estimates, especially at a formative stage, a

flexible criterion value rather than £n2 as in Eq. 9 is employed as

G, = G+ fg x Sg e (20)
where

Gc = critical value of Gi (x)

(_}i = average value of G; (x) -

fG = empirical constant (about 2.)

SG = standard deviation of Gi (x)
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A cell is tested for the membership of the cluster under formation by the criterion:
Gi (x) S<Max (Gc, RN2) e (21)

It will be rejected if this inequality is not satisfied. The criterion value is continuously updated
as a new member is merged into the cluster. The empirical constant fg as well as f0 in Eq. 18
is not a sensitive parameter, but selection of its value depends upon the detail required in cluster
divisions in the end result.

The criterion test is always applied first to the cell having the highest probability density among
the remaining cells and then the next test is performed. In this way the present estimate of Gi(g)
would be very close to those of the sample points that just joined the group in the previous steps,
if the point is a strong candidate of the cluster. Otherwise, it would be of far greater value than
those in the region, especially at the earlier stage of cluster formation. In this case it is thought
that the point is picked up from a hill side of another group (Fig. 1). The way to jump up and
down from a hypothetical hill to the others creates distinct distance (Gi value in a precise term)
gaps between points within the cluster being formed and that of other cluster candidates. These
distance gaps allow gradual updating of cluster characteristic parameter values by first merging
cells only closer to the centroid. Gradual updating is important in this approach since estimated
parameters at the earlier stage have larger uncertainty factors than those at later or final steps.
Testing membership candidacy for each point, merging or rejecting, and updating of the para-
meters continue until the last point is checked. 'After all the above-mentioned steps are processed,
searching for the next cluster is repeated. The test stops if no single cell element is left over (or
if the maximum number of clusters set up in the program is reached). This procedure is similar
in manner to “hill-sliding.” One who is sliding down from the highest point on a hill will eventu-
ally arrive at the bottom. Geometrical interpretation of the algorithm developed here in multi-
dimensional space is not directly comparable to the pathway of hill-sliding by an object. But the
general procedure may be considered as a “hill-sliding’’ aspect. Actual paths from the present po-
sition to the next lower density point will be zigzag motion due to randomness of the estimated

probability density function in the discrete space. The pathway is always descending or leveling,
ending at the bottom of a valley.

V. Cluster Compactness

Most of the measures to examine goodness of clustered results give relative comparisons on

the basis of original data structure or among clusters themselves. The sum of squared errors
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within clusters and divergence between clusters are typical examples of such measures. The former
evaluates the deviation of cluster samples from each centroid, while the latter measures separa-
bility between two clusters. In either example, the quantities of the measures increase with
‘ increasing dimensions of the feature space (Tou eral. 1974). Thus, difficulties are encountered
in standardizing criteria of these measures. It is desirable to formulate a cluster measure inde-
pendent of the number of variables and the number of sample data employed for clustering.

A measure is proposed to evaluate the goodness of an individual cluster by

1/d 1/d -
L = I Ci | I T I
i -1 e | e e (22)
Ni—d N-d
where

Li = compactness of cluster i

Ni = population of cluster i

d = dimension of feature space

T = total scatter matrix of the data

and the determinants (|C; | and | T|) of both matrices, C; and T, exist.

The cluster compactness parameter Li is a dimensionless quantity. The denominator is con-
stant for a given set of data and has the dimension of length-square. It can be considered a charac-
teristic value of the data (say C ). The determinant of a scatter matrix is proportional to the

product of the variances in the direction of the principal axes, which are defined by the canonical

transform of the scatter matrix. It is the vplume of a nyper~e11ipsoid defined by the unit Mahala-
nobis distance (i.e., ()_(-Hi)"ci_l (x 'Ei)= 1) from the cluster centroid. The volume measures the
average scatterness (or squared Euclidean distance) of the pattern vectors within the cluster around
their mean pattern vector. The length between the centroid and a point on the hyper-ellipsoid
may be interpreted as the mean squared-error in the direction of the feature space. For this
reason, the hyper-ellipsoidal volume defined by the determinant of a cluster covariance matrix
will be called simply the ‘“scatterness volume” of the cluster. The value in the bracket of Eq. 22
is approximately proportional to the average volume per cluster element if the number of elements
defining the covariance matrix is sufficiently larger than that of dimensions. Subtraction by d
from N or Ni in the denominator of each bracket is devised for the unbiased estimation of the

parameter. Note the pattern vectors less than or equal to the number of dimensions cannot form
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any hypervolume and the covariance matrix of those pattern vectors is always singular (Duda et
al. 1973). However, the value of d may be any nonnegative value, if desired for the purpose of
defining the parameter only.

Analysis of the Landsat data in this study indicates that clusters having a compactness parame-
ter less than 0.4 are distinctly separable from others and that those with a parameter larger than

1 are scattered around in a region rather than distributed normally.

VI. Separability between Clusters

Distinctness of a cluster against the rest of the data has been evaluated in terms of various
measures, such as Mahalanobis distance and divergence (Duran and Odell 1974). Mahalanobis
distance was introduced for a measure of metric distance between two population centroids
(Atchley etal. 1975). Its original definition is different from the concept employed here, which
is a distance measure between a pattern vector and a cluster centroid. The original formula uses
a pooled covariance matrix of two distributions. Application of this formula to all possible pairs
of classes requires considerable computational time if the number of classes is large.

Divergence is another commonly used measure of dissimilarity between two distributions
(Tou etal. 1974; Swain 1972). It is defined by the sum of expectations of log-likelihood ratios

in favor of one class against the other:

D; = Sx [p; () — pj(®)] &n

The divergence is inferred as the total average information for discrimination between two
classes. Higher values of the divergence estimates indicate better separability between the pair.
It also possesses other interesting properties (Tou et al. 1974; Swain 1972).

The divergence is used in this paper to analyze the clustering performance. The major reason
for employing the parameter is that it can be computed by a simpler formula under Gaussian

assumption. For two Gaussian classes with unequal a priori probabilities, Eq. 23 is reduced to

D; = % tr [(P;C;~ PC) (cj"—c'i‘)]
, - - T
+ /Ztr[(PiCil+Pjle)(.Ei_Ej) (B-g) 1
P lCl%
+ (Pi—Pj) N e e (24)

% 2
plc|
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where tr denotes the trace of the matrix in the bracket. This is an extended formula of the
relationship usually seen in the literature (Tou et al. 1974) in the case of two distributions with
different mixing proportions. It is noteworthy that the Mahalanoi)is generalized distance is the
divergence between two Gaussian populations with unequal mean vectors but equal a priori
probabilities and cbvariance matrices (Tou et dl. 1974). The divergence is normalized by the
sum of two claés a priori probabilities as 2Dii / (Pi + Pj). The additive prope;ty Qf divergence
for independent variables indicates that no universal value of a divergence criterion is acceptable
for any combinations of multivariate measurements. It is desirable to reduce the effects of dimen-
sionality as well as the sample size in cluster analysis. For this reason, the estimates of divergence
divided by the entropy of the data is used in this study, whenever any comparison is made regard-
ing divergence. Thé entropy E ()) is a statistical measure of uncertainty defined by (Young et al.
1974) |

E () = S PO 0 [1/p(X) ] dX. o 25)

X

It is interpreted as the expected value of an information unit, £n [1/p (x)], that is, the average
uncertainty of the information source. As indicated by its functional form similar to that of
divergénce, Eq. 23, the entropy possesses properties similar to those for divergence. The normal-

ized divefgence to the entropy given by

_ 2Dy

I @qP) B

is comparable in any combination of variables. This value can determine relative separability of
one cluster against the other regardiess of the number of variables employed. Higher values
indicate distinctive separability between the pair of clusters while smaller ones mean high re-

semblance of the pairs in their data characteristics.

VII. On the Overall Objective of Partitioning

Remote sensing data of natural scenes may contain countless subcategorical information on
natural land-cover/land-use classes. One of the best partitioning in an established mathematical

‘frame may not satisfy a user (or analyst) who desires the class categorical information at a certain
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level. Tuning of the mathematical goal at a user’s desired level is not easily achievable by a nu-
merical scale. Existence of various levels for classification schemes (Anderson et al. 1976) inevi-
tably introduces heuristic parameters to obtain the desired level of the resultant classification or
clustering.

To evaluate the performance of clustering, the following overall objective function was set

forth:

C
= Z’ Qe et e 27
F = (Nl d)Li ....................................................... 27)

i=1

subject tc

G; (x, € Wi)\<* Gj (%, € W) forall i,jand R, o (28)
Ic D= 2 (O OO TSRO PP PRI PPSOROUOTOPPIYOR P PP PRSP 29)
0< Li< L, if Min Gii <Ds forall iand j, ..ccoooveeeeeeeeeieerrae e eeer e e (30)
Mc< Mi SN TOT 8I1 1, ceoveeeeieee e et ee e e et aeaeessenessanneesneaen 31)

where 1, DS, Lc and Mc are the number of resultant clusters, the minimum acceptable value
of the normalized divérgence, the maximum acceptable value of the compactness parameter,
and the minimum number of probability cells in a cluster, respectively. ‘Mi is the number of
cells in cluster i. The miniﬁlum number Mc of cglls in a cluster should be larger than the number

of variates (dimensions) d, so that a covariance matrix might not be singular. This is a better

statement than that N c < Ni <N where N c is the minimum number of identities required in a
cluster. The reason is that Mi < Ni and hence it gives better assurance of a covariance being
nonsingular. Note that a covariance matrix is always singular if N; <d or M, < d (Duda et al.
1973). Parts of the constraints: 1) I =1,2) L >0, and 3) M, <N are self-evident and there
is no requirement for specification of these criteria in the algorithm. However, an investigator
may input any other desired values which do not exceed the limits as parameters. It is also worth-
while to note that cluster or class identities less than ten times the dimensionality d will usually
lead to an increase in probability of error if predictions are made based on their covariance
matrices (Ball 1965). The constraint Eq. 28 is equivalent to the decision rule of the maximum
likelihood classification (Eq. 11), since the only other variable in clustering function Gi ()_(n)
defined by Eq. 6 is p ()_(n), which is common is both sides. Hence, the inequality, Eq. 28, can

be called the “maximum likelihood constraint’’ for each data point.
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The objective function F can be expressed in terms of covariance matrices:

N—d Ic
F = —— |C1| ..................................................................................... (27a)
Tl Z
i=1
Minimizing F is equivalent minimizing the sum of the determinants of individual cluster

covariance matrices. Therefore, the objective of clustering is to obtain a partitioning of the
data which minimizes the sum of cluster scatterness volumes under the imposed constraints. The
objective function is generally nonlinear and its usual multidimensional form cannot be described
in easily manageable terms.

There are substantial differences between the present formulation and those which use

frequently-cited clustering criterion function [W|, where

The simple algebraic sum of all the cluster covariance matrices, W, is commonly referred to
the total intragroups (or pooled-within clusters) scatter matrix (Friedman et al. 1967; Fukunaga
etal.. 1970; Duda et al. 1973). It has been shown that the determinant of the matrix is invariant
to nonsingular linear transformations of the data and is able to produce well-definable natural
cluster boundaries when it is used as a clustering criterion (Fukunaga et al. 1970). The determi-
nant of the scatter matrix alone is of no use as a clustering criterion function if the number of
clusters is not known in advance, since more subdivisions of the data space tend to reduce the
value’ of the determinant. An essential difference between the present objective function F and

the dete"r‘miﬁarit of the total inttagroups scatter matrix, |W|, as a clustering criterion comes from

the fact:
IC IC
wl = | E C | # E 1C; !
i=1 i=1

The determinant [W| has been used as a measure of compactness of the clusters (Duda et
al. 1973), but this interpretation is somewhat misleading. The two simple examples (Fig. 5)
illustrate the ihappropriateness of using |W| as a clustering objective function or an overall cluster

compactness measure.
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- (' = - 1o T
Cl" Cl—Cz— ( ) C2" L)(j
0 4/, v,

W=0C1*+6= (20); Wl = 16,
0 8
w::cll +C’2= (5 0) : |w;|=25,
0 s
!C]‘+lC2I=IC'll+|C'2| = 4 + 4 =8,

21

The first case is that two-dimensional covariance matrices of two clusters are identical except

for their locations, and the second that the two have the same scatterness volumes (determinants)

but different orientations and locations.

Under the assumption that two clusters are completely separated in both cases, their total
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Ilustration of the Total Intragroups Scatter Matrices for Two Separable Cluster in
Two- Dimensional Space. Each cluster has the same scatterness volume but different
mean (centroid) from the other in either case. The pooled covariance matrices
w (--'C1 + C2) and W' (=C
entations are not the same in both cases, even though |C1| = IC2| = ICl'l =

1' + C2') are different from each other since cluster ori-

intragroups scatter matrices have different shapes and determinant values. The first case yields

smaller determinant values of the resultant scatter matrix than the latter does. This indicates

that minimizing the determinant of the total intragroup scatter matrix W forces all the clusters
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to be partitioned in the shapes and orientations as similarly as possible. Any set of separable
clusters would not make much difference whatever their natural shapes or orientations. This is
another drawback in using |W| criterion for clustering. The present clustering formulation has
been devised to circumvent these difficulties by employing the sum of the determinants of indi-
vidual cluster covariance matrices as the objective funcfion. The set of constraints has provided
some guidelines to overcome various undesirables aspects commonly encountered in clustering
the heterogeneous natural scene data in this formulation.

The global solution to this optimization problem may be found by a systematic but exhaustive
enumeration of all partitioning alternatives. Search of the solution by such an enumeration is
often not permitted due to requirement of excessive computation and memory storage for a
large volume of data. It is noted that the objective function is proportional to (N-d). Hence, a
data partition index to evaluate the clustered results is proposed as a sample-size-independent

indicator:

PI = [F/(N-d)]}/¢

1/d

(I%IZ |ci|) ........................ ....... S 33)
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This is an overall measure index of the goodness for the data partitioning. The smaller the

index value is, the better optimal partitioning is achieved.

VIII. Results and Discussion

The proposed cluster initialization method was programmed and tested using the Landsat data
of May 11, 1976, over Chippewa River Basin, Wisconsin. Sample data of the Multi-Spectral
Scanner (MSS) bands 4 and 5 were extracted from the satellite’s computer-compatible tape by
the Landsat Mapping System of Colorado State UniVeljsity, Fort Collins, Colorado (Park et al.
1979). The data covered two different locations of the study area. Of the.total 200 pixels
(picture elements), 111 population cells were identified (Fig. 6). The test was made with the

input parameters of ft‘) = 2.7 and fG = 1 for the criterion functions, Eqgs. 18 and 20, respectively.
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Fig. 6. Bivariate Population Distribution of Landsat Sample
Data. Cluster seeding points were identified by the
hill-sliding algorithm.

Fifteen initial clusters were formed (Fig. 7), but one of them which did not meet the criterion,
Eq. 31, was excluded from various cluster evaluations (Table 1).

The results suggested that there would be

a compact cluster if L;< 0.2,
a scattered cluster if L, > 0.4, and

a well-separated cluster from the others if Gjj > 50 forall j¥ i
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Several test runs with varying input values of both parameters yielded similar partitioned

patterns of the data and most of significant clusters (like clusters 1 through 5) were identified.
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Fig. 7. Initial Clusters of the Test Data. The numbers are
cluster labels.

IX. Summary

A method was developed to extract significant Gaussian clusters on the basis of discrete multi-



HILL-SLIDING STRATEGY

Table 1. COMPARISON OF INITIAL CLUSTERS

25

G;j Map symbol Identified
Cluste.r Ni M; rtz L three smallest values (j cluster) in Fig. 8 Class
No.(®)
1 60 17 115 .058 20(12) 33(7) 47 (4) * crop 1
2 15 7 7.0 .064 35( 5) 340(1) 850 (12) w water
3 27 15 15.0 .20 1311) 25(10) 29 (6) X crop 2
4 19 10 6.5 11 9.1 (12) 18(10) 24 (8) = mixture
5 12 9 183.0 25 35( 2 130(Q1) 210Q12) # shallow
‘ (18.0)(D water
6 10 6 225 .52 28(15) 29 (3) 34 (11) 1,%‘2) healthy veg.
21.6)®
7 4 3 35 .098 29 (12) 33(1) 44 (4) (+)@
8 4 3 3.0 .092 23 (10) 24 4) 33.9) ( ,=)®
8 6 11.5 19 14 (11) 24 (10) 33 (8) - mixture
10 13 11 14.5 .29 14 (11) 18 (4) 23 (8) . mixture
11 11 8 33.0 .28 13(3) 14 (10) 14 (9) / mixture
(23.6)
12 9 8 139.5 44 9.14) 20Q1) 29 (D) + mixture
(26.3)
13 2 @ 2625 - - - - ¢+
(29.1)
14 3 3 15.0 14 3201 6005 633  (%)®
15 3 3 - 42 28 (6) 43(11) 60 (14) (1,%)©
=417
PP= 0.146
Note.
@  Adjusted value in the bracket was used.
@  Cluster was split into two parts when Figure 8 was produced because of high Li'
@  Elements of the cluster were merged into other clusters in Figure 8.
@  Cluster was discarded and merged into other clusters due to the singularity of its covariance matrix.
®  Cluster no. 13 had no contribution to this value.

variate probability density estimates. The key idea was that a proposed clustering function could

distinguish elements of a cluster under formation from the rest without knowledge of the other

clusters. The algorithm described here showed effectiveness in extracting Gaussian-type clusters

from Landsat MSS data.

The partitioning obtained by this technique was not optimal, but it

could be used as reasonable input data to other iterative clustering programs for further improve-

ment.

A dimensionless cluster compactness parameter was set forth as a universal measure of cluster
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goodness and used favorably in test runs, Separability between clusters was examined by employ-
ing a normalized divergence which was defined by the divergence divided by the entropy of the
entire sample data. The overall clustering objective function and the partition index were formu-
lated in terms of cluster covariance matrices. They were good indicators of the overall achieve-

ment for evaluation of the partitioned results obtained under various conditions or at different

stages.

COLUMN 0Uo0VOVVOY 00000060V VY
Azstme 3333333334 vovllillill
NUMBERS 1234567899 7890123450
IN THE AREA
"MAPS
41 XX/Seduaae 151 vo/ s e SHWW
42 XX/ +asaadt 152 P ]
43 XX/ +ntasnas 153 =S HeHWR =
44 XXX=ootans 154 STHWWW/~/
49 XAXK=#aose 155 SHWWWH o o=/
46 XXX=sasaea 156 i
47 XXX R0 GEHS 157
48 XXX+uacaen 158
49 XX/edtasan 159
50 X//evetivocs 160
{a) {b)
CROP FIELDS . RIVER AND SURROUNDINGS

Fig. 8. Cluster Maps of the Study Area with Final 11 Clusters
at a Scale I: 24,000.
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