DOI QR코드

DOI QR Code

Saddlepoint approximations for the risk measures of portfolios based on skew-normal risk factors

왜정규 위험요인 기반 포트폴리오 위험측도에 대한 안장점근사

  • Yu, Hye-Kyung (Public Procurement Service) ;
  • Na, Jong-Hwa (Department of Information and Statistics/Business Data Convergence, Chungbuk National University)
  • 유혜경 (조달청) ;
  • 나종화 (충북대학교 정보통계학과/비즈니스데이터융합학과)
  • Received : 2014.07.02
  • Accepted : 2014.08.03
  • Published : 2014.11.30

Abstract

We considered saddlepoint approximations to VaR (value at risk) and ES (expected shortfall) which frequently encountered in finance and insurance as the measures of risk management. In this paper we supposed univariate and multivariate skew-normal distributions, instead of traditional normal class distributions, as underlying distribution of linear portfolios. Simulation results are provided and showed the suggested saddlepoint approximations are very accurate than normal approximations.

본 논문에서는 금융분야에서 사용되고 있는 포트폴리오 위험측도인 VaR (value at risk)와 ES (expected shortfall)의 측정 방법으로 안장점근사의 적용 방법을 제시하였다. 본 연구의 특징은 금융자료에 대하여 정규분포를 가정하지 않고, 치우침을 가정한 왜정규분포를 가정하여 왜정규분포를 따르는 위험요인으로 구성된 선형 포트폴리오 위험측도에 대해 안장점근사를 실시하였다. 또한 모의실험을 통해 위험측도의 안장점근사의 정도가 매우 우수함을 확인하였다.

Keywords

References

  1. Acerbi, C. and Tasche, D. (2002). Expected shortfall: A natural coherent alternative to value at risk. Economic Notes, 31, 379-388. https://doi.org/10.1111/1468-0300.00091
  2. Antonov, A., Mechkov, H. and Misirpashaev, T (2005). Analytical techniques for synthetic CDOs and credit default risk measures, Technical Report, Numerix, New York.
  3. Artzner, P., Delbaen, F., Eber, J. and Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9, 203-228. https://doi.org/10.1111/1467-9965.00068
  4. Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12, 171-178.
  5. Azzalini, A. (1986). Further results on a class of distributions which includes the normal ones. Statistica, 46, 199-208.
  6. Azzalini, A. (2005). The skew-normal distribution and related multivariate families(with discussion). Scandinavian Journal of Statistics, 32, 159-188. https://doi.org/10.1111/j.1467-9469.2005.00426.x
  7. Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew normal distributions. Journal of the Royal Statistical Society B, 61, 579-602. https://doi.org/10.1111/1467-9868.00194
  8. Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika, 83, 715-726. https://doi.org/10.1093/biomet/83.4.715
  9. Barndorff-Nielsen, O. E. and Cox, D. R. (1979). Edgeworth and saddlepoint approximations with statistical applications(with discussion). Journal of the Royal Statistical Society B, 41, 279-312.
  10. Byun, B. G., Yoo, D.S. and Lim, J. T. (2013). Validity assessment of VaR with Laplacian distribution. Journal of the Korean Data & Information Science Society, 24, 1263-1274. https://doi.org/10.7465/jkdi.2013.24.6.1263
  11. Daniels, H. E. (1954). Saddlepoint approximations in statistics. The Annals of Mathematical Statistics, 25, 631-650. https://doi.org/10.1214/aoms/1177728652
  12. Huang, X. and Oosterlee C. W. (2009). Saddlepoint approximations for expectations. preprint.
  13. Lane, M. N. (2002). Pricing risk transfer transactions, ASTIN Bulletin, 30, 259-293.
  14. Lugannani, R. and Rice, S. (1980). Saddlepoint approximations for the distribution of the sum of independent random variables. Advances in Applied Probability, 12, 475-490. https://doi.org/10.2307/1426607
  15. McNeil, A., Frey, R. and Embrechts, P. (2005). Quantitative risk management: Concepts, techniques and tools, Princeton University Press, New Jersey.
  16. Na, J. H. (2008). Saddlepoint approximation to quadratic form and application to intraclass correlation coefficient. Journal of the Korean Data & Information Science Society, 19, 497-504.
  17. Na, J. H. and Yu, H. K. (2013). Saddlepoint approximation for distribution function of sample mean of skew-normal distribution. Journal of the Korean Data & Information Science Society, 24, 1211-1219. https://doi.org/10.7465/jkdi.2013.24.6.1211
  18. Rogers, L. C. G. and Zane, O. (1999). Saddlepoint approximations to option prices. The Annals of Applied Probability, 9, 493-503. https://doi.org/10.1214/aoap/1029962752
  19. Vernic, R.(2006). Multivariate skew-normal distributions with applications in insurance. Insurance Mathematics and Economics, 38, 413-426. https://doi.org/10.1016/j.insmatheco.2005.11.001
  20. Yang, J., Hurd, T. and Zhang, X. (2006). Saddlepoint approximation method for pricing CDOs. Journal of Computational Finance, 10, 1-20.

Cited by

  1. Saddlepoint approximations for the risk measures of linear portfolios based on generalized hyperbolic distributions vol.27, pp.4, 2016, https://doi.org/10.7465/jkdi.2016.27.4.959