References
- Acerbi, C. and Tasche, D. (2002). Expected shortfall: A natural coherent alternative to value at risk. Economic Notes, 31, 379-388. https://doi.org/10.1111/1468-0300.00091
- Antonov, A., Mechkov, H. and Misirpashaev, T (2005). Analytical techniques for synthetic CDOs and credit default risk measures, Technical Report, Numerix, New York.
- Artzner, P., Delbaen, F., Eber, J. and Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9, 203-228. https://doi.org/10.1111/1467-9965.00068
- Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics, 12, 171-178.
- Azzalini, A. (1986). Further results on a class of distributions which includes the normal ones. Statistica, 46, 199-208.
- Azzalini, A. (2005). The skew-normal distribution and related multivariate families(with discussion). Scandinavian Journal of Statistics, 32, 159-188. https://doi.org/10.1111/j.1467-9469.2005.00426.x
- Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew normal distributions. Journal of the Royal Statistical Society B, 61, 579-602. https://doi.org/10.1111/1467-9868.00194
- Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika, 83, 715-726. https://doi.org/10.1093/biomet/83.4.715
- Barndorff-Nielsen, O. E. and Cox, D. R. (1979). Edgeworth and saddlepoint approximations with statistical applications(with discussion). Journal of the Royal Statistical Society B, 41, 279-312.
- Byun, B. G., Yoo, D.S. and Lim, J. T. (2013). Validity assessment of VaR with Laplacian distribution. Journal of the Korean Data & Information Science Society, 24, 1263-1274. https://doi.org/10.7465/jkdi.2013.24.6.1263
- Daniels, H. E. (1954). Saddlepoint approximations in statistics. The Annals of Mathematical Statistics, 25, 631-650. https://doi.org/10.1214/aoms/1177728652
- Huang, X. and Oosterlee C. W. (2009). Saddlepoint approximations for expectations. preprint.
- Lane, M. N. (2002). Pricing risk transfer transactions, ASTIN Bulletin, 30, 259-293.
- Lugannani, R. and Rice, S. (1980). Saddlepoint approximations for the distribution of the sum of independent random variables. Advances in Applied Probability, 12, 475-490. https://doi.org/10.2307/1426607
- McNeil, A., Frey, R. and Embrechts, P. (2005). Quantitative risk management: Concepts, techniques and tools, Princeton University Press, New Jersey.
- Na, J. H. (2008). Saddlepoint approximation to quadratic form and application to intraclass correlation coefficient. Journal of the Korean Data & Information Science Society, 19, 497-504.
- Na, J. H. and Yu, H. K. (2013). Saddlepoint approximation for distribution function of sample mean of skew-normal distribution. Journal of the Korean Data & Information Science Society, 24, 1211-1219. https://doi.org/10.7465/jkdi.2013.24.6.1211
- Rogers, L. C. G. and Zane, O. (1999). Saddlepoint approximations to option prices. The Annals of Applied Probability, 9, 493-503. https://doi.org/10.1214/aoap/1029962752
- Vernic, R.(2006). Multivariate skew-normal distributions with applications in insurance. Insurance Mathematics and Economics, 38, 413-426. https://doi.org/10.1016/j.insmatheco.2005.11.001
- Yang, J., Hurd, T. and Zhang, X. (2006). Saddlepoint approximation method for pricing CDOs. Journal of Computational Finance, 10, 1-20.
Cited by
- Saddlepoint approximations for the risk measures of linear portfolios based on generalized hyperbolic distributions vol.27, pp.4, 2016, https://doi.org/10.7465/jkdi.2016.27.4.959