• Title/Summary/Keyword: multivariate linear process

Search Result 35, Processing Time 0.027 seconds

THE CENTRAL LIMIT THEOREMS FOR THE MULTIVARIATE LINEAR PROCESS GENERATED BY WEAKLY ASSOCIATED RANDOM VECTORS

  • Kim, Tae-Sung;Ko, Mi-Hwa
    • Journal of the Korean Statistical Society
    • /
    • v.32 no.1
    • /
    • pp.11-20
    • /
    • 2003
  • Let{Xt}be an m-dimensional linear process of the form (equation omitted), where{Zt}is a sequence of stationary m-dimensional weakly associated random vectors with EZt = O and E∥Zt∥$^2$$\infty$. We Prove central limit theorems for multivariate linear processes generated by weakly associated random vectors. Our results also imply a functional central limit theorem.

ON A CENTRAL LIMIT THEOREM FOR A STATIONARY MULTIVARIATE LINEAR PROCESS GENERATED BY LINEARLY POSITIVE QUADRANT DEPENDENT RANDOM VECTORS

  • Kim, Tae-Sung
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.119-126
    • /
    • 2002
  • For a stationary multivariate linear process of the form X$_{t}$ = (equation omitted), where {Z$_{t}$ : t = 0$\pm$1$\pm$2ㆍㆍㆍ} is a sequence of stationary linearly positive quadrant dependent m-dimensional random vectors with E(Z$_{t}$) = O and E∥Z$_{t}$$^2$< $\infty$, we prove a central limit theorem.theorem.

A CENTRAL LIMIT THEOREM FOR THE STATIONARY MULTIVARIATE LINEAR PROCESS GENERATED BY ASSOCIATED RANDOM VICTORS

  • Kim, Tae-Sung;Ko, Mi-Hwa;Chung, Sung-Mo
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.95-102
    • /
    • 2002
  • A central limit theorem is obtained for a stationary multivariate linear process of the form (equation omitted), where { $Z_{t}$} is a sequence of strictly stationary m-dimensional associated random vectors with E $Z_{t}$ = O and E∥ $Z_{t}$$^2$ < $\infty$ and { $A_{u}$} is a sequence of coefficient matrices with (equation omitted) and (equation omitted).ted)..ted).).

THE CENTRAL LIMIT THEOREMS FOR THE MULTIVARIATE LINEAR PROCESSES GENERATED BY NEGATIVELY ASSOCIATED RANDOM VECTORS

  • Kim, Tae-Sung;Ko, Mi-Hwa;Ro, Hyeong-Hee
    • The Pure and Applied Mathematics
    • /
    • v.11 no.2
    • /
    • pp.139-147
    • /
    • 2004
  • Let {<$\mathds{X}_t$} be an m-dimensional linear process of the form $\mathbb{X}_t\;=\sumA,\mathbb{Z}_{t-j}$ where {$\mathbb{Z}_t$} is a sequence of stationary m-dimensional negatively associated random vectors with $\mathbb{EZ}_t$ = $\mathbb{O}$ and $\mathbb{E}\parallel\mathbb{Z}_t\parallel^2$ < $\infty$. In this paper we prove the central limit theorems for multivariate linear processes generated by negatively associated random vectors.

  • PDF

On a functional central limit theorem for the multivariate linear process generated by positively dependent random vectors

  • KIM TAE-SUNG;BAEK JONG IL
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.119-121
    • /
    • 2000
  • A functional central limit theorem is obtained for a stationary multivariate linear process of the form $X_t=\sum\limits_{u=0}^\infty{A}_{u}Z_{t-u}$, where {$Z_t$} is a sequence of strictly stationary m-dimensional linearly positive quadrant dependent random vectors with $E Z_t = 0$ and $E{\parallel}Z_t{\parallel}^2 <{\infty}$ and {$A_u$} is a sequence of coefficient matrices with $\sum\limits_{u=0}^\infty{\parallel}A_u{\parallel}<{\infty}$ and $\sum\limits_{u=0}^\infty{A}_u{\neq}0_{m{\times}m}$. AMS 2000 subject classifications : 60F17, 60G10.

  • PDF

A Functional Central Limit Theorem for the Multivariate Linear Process Generated by Negatively Associated Random Vectors

  • Kim, Tae-Sung;Seo, Hye-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.615-623
    • /
    • 2001
  • A functional central limit theorem is obtained for a stationary multivariate linear process of the form (no abstract. see full-text) where{ $Z_{t}$} is a sequence of strictly stationary m-dimensional negatively associated random vectors with E $Z_{t}$=O and E∥ $Z_{t}$$^2$<$\infty$ and { $A_{u}$} is a sequence of coefficient matrices with (no abstract. see full-text) and (no abstract. see full-text).text).).

  • PDF

Comparison of the Efficiencies of Variable Sampling Intervals Charts for Simultaneous Monitoring the means of multivariate Quality Variables

  • Chang, Duk-Joon
    • Journal of Integrative Natural Science
    • /
    • v.9 no.3
    • /
    • pp.215-222
    • /
    • 2016
  • When the linear correlation of the quality variables are considerably high, multivariate control charts may be a more effective way than univariate charts which operate quality variables and process parameters individually. Performances and efficiencies of the multivariate control charts under multivariate normal process has been considered. Some numerical results are presented under small scale of the shifts in the process to see the improvement of the efficiency of EWMA chart and CUSUM chart, which use past quality information, comparing to Shewart chart, which do not use quality information. We can know that the decision of the optimum value of the smoothing constant in EWMA structure or the reference value in CUSUM structure are very important whether we adopt combine-accumulate technique or accumulate-combine technique under the given condition of process.

Abnormality Detection to Non-linear Multivariate Process Using Supervised Learning Methods (지도학습기법을 이용한 비선형 다변량 공정의 비정상 상태 탐지)

  • Son, Young-Tae;Yun, Deok-Kyun
    • IE interfaces
    • /
    • v.24 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • Principal Component Analysis (PCA) reduces the dimensionality of the process by creating a new set of variables, Principal components (PCs), which attempt to reflect the true underlying process dimension. However, for highly nonlinear processes, this form of monitoring may not be efficient since the process dimensionality can't be represented by a small number of PCs. Examples include the process of semiconductors, pharmaceuticals and chemicals. Nonlinear correlated process variables can be reduced to a set of nonlinear principal components, through the application of Kernel Principal Component Analysis (KPCA). Support Vector Data Description (SVDD) which has roots in a supervised learning theory is a training algorithm based on structural risk minimization. Its control limit does not depend on the distribution, but adapts to the real data. So, in this paper proposes a non-linear process monitoring technique based on supervised learning methods and KPCA. Through simulated examples, it has been shown that the proposed monitoring chart is more effective than $T^2$ chart for nonlinear processes.

Multivariate Statistical Analysis and Prediction for the Flash Points of Binary Systems Using Physical Properties of Pure Substances (순수 성분의 물성 자료를 이용한 2성분계 혼합물의 인화점에 대한 다변량 통계 분석 및 예측)

  • Lee, Bom-Sock;Kim, Sung-Young
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.3
    • /
    • pp.13-18
    • /
    • 2007
  • The multivariate statistical analysis, using the multiple linear regression(MLR), have been applied to analyze and predict the flash points of binary systems. Prediction for the flash points of flammable substances is important for the examination of the fire and explosion hazards in the chemical process design. In this paper, the flash points are predicted by MLR based on the physical properties of pure substances and the experimental flash points data. The results of regression and prediction by MLR are compared with the values calculated by Raoult's law and Van Laar equation.

  • PDF