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ASYMPTOTICS FOR MULTIVARIATE MOVING
AVERAGE PROCESS WITH NA RANDOM VECTORS

Kwanc-HEE HAN

Abstract. The aim of this paper is to establish a functional central
limit theorem for multivariate moving average process generated
by negatively associated random vectors under the finite second

moments.

1. Introduction

A finite family of random variables {¢;,1 < i < n} is said to be
negatively associated if for every pair of disjoint subsets A and B of
{1,---,n}, Cov(f(e;,i € A),g(e;,j € B)) <0 whenever f and g are co-
ordinatewise non-decreasing and the covariance exists. An infinite family
is negatively associated if every finite subfamily is negatively associated.
The concept of the negative association was introduced by Alam and
Saxena(1981) and Joag-Dev and Proschan(1983). As pointed out and
proved by Joag-Dev and Proschan(1983), a number of well-known multi-
variate distributions possess the negative association property. Negative
association has found important and wide applications in multivariate
statistical analysis and reliability theory. Many investigators also discuss
applications of negative association to probability, stochastic processes
and statistics. The notions of negatively associated random variables

have received increasing attention recently. We refer to Joag-Dev and
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Proschan(1983) for fundamental properties, Newman(1984) for the cen-
tral limit theorem and Matula(1992) for the three series theorem and
Su et al.(1997) for a moment inequality and a weak invariance principle.
More recently, Shao(2000) established the functional central limit theo-
rem for negatively associated random variables with finite variances.
We can still extend the concept of negative association to the random
vectors as follows: Let {Z;,1 < i < n} be R™-valued random vectors.
They are said to be negatively associated(NA) for every pair of disjoint
subsets A and B of {1,--- ,n}

(1) Cov(f(Zi,i € A),9(Zj,j € B)) <0

whenever f and ¢ are coordinatewise increasing and the covariance ex-
ists. An infinite family is nagatively associated if every finite subfamily
is negatively associated.

Define a multivariate moving average process by

(e o]
(2) Xe=> AuZ_y, t=0,£1,42,- -, u=0,1,2,---
u=0
where {Z;} is a sequence of m-dimensional random vectors with E(Z;) =

O and {A,} is a sequence of m X m matrices such that

(3) D Aull < 00 and > Ay # Omxm,
u=0 u=0
where for any m x m,m > 1, matrix 4 = (a;;), Al := 372, 271 |as]

and Opxm denotes the m x m zero matrix. In time-series analysis, this
process is of great importance. Many important time-series models, such
as the causal multivariate auto regressive moving average(MARMA)
process(Brockwell and Davis, 1987), have type (2) satisfying (3).

In Section 2 we establish the functional central limit theorem(FCLT)
for negatively associated random vectors with finite variances. Apply-
ing this result we also derive a functional central limit theorem for a

multivariate linear process generated by negatively associated random
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vectors in Section 3.

2. A FCLT for negatively associated random vectors

Lemma 2.1(Su et al., 1997) Let r > 2 and let {¢;, 1 <i<n} bea
sequence of NA random variables with Fe; = 0 and El¢;|” < oo. Then,

there exists a constant A, > 0 such that

k n n
(4) E max [Zei|r < AT{(Z Ee)/? 4 ZE|€¢|T}.
i=1 i=1 i=1

1<k<n

Lemma 2.2(Shao, 2000) Let {¢;,¢ > 1} be a sequence of NA random

variables with zero means and finite second moments. Let T}, = Zle €

and By = le E¢2. Then for all z > 0 and a > 0,
>
P(1r<nl§12< Tkl 2 )
z? B /(12a)
<2P(m + +4 n AT
(5) - (1<1?<X k[ > a) +dezp(- 8Bn) (4(xa + Bn))

The proofs of Lemmas 2.1 and 2.2 can be found in Shao(2000).

Lemma 2.3 Let r > 2 and let {Z;,1 < i < n} be a sequence of nega-
tively associated random vectors in R™ with FZ; = O and E||Z;||" < 0o
where || Z;|| = (Z3 +-- -+ Z%m)%. Then there exist a constant 0 < 4, <

oo such that

(6) F max ”ZZW < Am'{ ZEHZU %+ZE||Z||}

1<k<n

Proof. Note that

k m k
()
< ;
(7) w2 <) max 13,27
1= J=
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and by Lemma 2.1

k n .
B |3 201 < A EEME+ Y EIZOT)
ST =1 i=1
® < A{QCEIZI®E +> Bz}
=1 i=1

Hence, from (7) and (8) equation (6) follows.

Lemma 2.4 Let {Z;,1 < ¢ < n} be a sequence of negatively associated
random vectors in R™ with E(Z;) = O and E||Z;||> < co. Then for all
z>0and a>0,

k
P Zil| >
(i 1 25240 2 me)

2
T
< 2mP 4 —T~n =7
< 2mP(max [1Z4]| > a) + 4mep( 82?:1E||Zi|!2)
n 12
© 4 Yoy EllZ4| o/ (12a)

( 7
A(za+ 30, BIZ4|1%)
Proof. From (7) and Lemma 2.2, (9) follows easily.

Theorem 2.5 Let {Z;,7 > 1} be a strictly stationary sequence of nega-
tively associated random vectors in R™ with E(Z;) = O and E||Z;||? <
0o. Define, for t € [0,1], n > 1

[nt]

(10) Sa(t)=n"% Y Z.
=1
If
m m . .
(11) ENzi? +2Y Y E@ZY27) = 0? < o,
i=1 j=1

then, as n — oo,

(12) Sp = W™
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where —% indicates weak convergence, and W™ is an m-dimensional

Wiener measure with covariance matrix I' = (oy;),

(o]
k j k : . k
(13) ox = B2 20) + Y (B2 27 + B2 (7).
=2 .

Proof. By means of the simple device due to Cramer Wold(see[2],[3]),
from the Newman’s central limit theorem for negatively associated ran-

dom variables we obtain

n

(14) n"1Y z; —P N(O,T),
i=1

where N(O, T') denotes an m-dimensional normal random vector and the
symbol =P indicates convergence in distribution. Hence, by the similar
proof to that of Theorem 2 of Burton et al.(1986) on the functional
central limit theorem for weakly associated random vectors, the limit
point of S,(-) is Wiener measure W™ in R™ with covariance matrix
T = (ok;).

It remains to verify the tightness of S,(-)(see Theorem 15.1 of [2]). By
Theorem 8.4 of [2] we only need to show that for any € > 0, there exist

a positive number A and an integer n such that for every n > ng

k
1
) 1N < mBer—2
(15) P(fgnx?é(n I ;_1 Zi|| > An2) < m°eX
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Applying (9) with A =m\’, z = A'nz and a = /\'n%/48

P, 13> v

= P(max HZZ | > mA'n?)

1<k<

IA

2mP(1rSnI?2<n |Zg| > A n§/48)

Mn nE|Z, |
e 4
8nE||Zl|12) + m(4(nE|[21H2 + \2n/48)
< 2m(48)2N "2E|Z1 |2 I{||Z1| > A'n?/48}

22 12E)Z, |2
sEE) e

< meX "2 = m3e2

+4mexp(— )?

+4mezp(—

provided that X is sufficiently large. This proves (15), and hence the

proof of Theorem 2.5 is complete.

3. A FCILT for a linear process generated by NA random

vectors

Theorem 3.1 Lex X, satisfy model (2) and let {Z;,t > 1} be a sta-
tionary sequence of negatively associated random vectors in R™ with
E(Z:) = O and E||Z||* < oc. Define, for s € [0,1], n > 1, the stochas-
tic process &, by

[ns]

—n 2ZXt

If (11) holds then

(16) &, Y W™
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where —" indicates weak convergence and W™ is an m-dimensional
Wiener measure with covariance matrix T = (3°72; 4;)1(3_72, A;)
and I' is defined in (13).

Proof. For every fixed [ > 1, put

x
Xt = ZAuZt——u
= ZAZtu+ZAZtu

l

From the idea in Fuller(1996, p.320) we obtain that for any k > 1,

k k l
;Xgl} = YN Az,

t=1 u=0

= ZA ZZt+ZZ1 zZAtJrZZk ; Z Ay

t=1+1
= Z Ay Z Zi + R(k,1) (say).
u=0 t=1

Therefore, it follows that for every fixed [ > 1,
| [ns] | sl l [ns] l
n 2y X o= nE Y XY 4+no 2ZX()
t=1 i=1

1 [ns]

= AT 2 + 07z R([ns), 1)

u=0 t=1

[ns]

(17) +n"2 Z th

By (17), Theorem 4.1 given in Billingsley(1968, p.25) and noting that
ZL:O |Aull < o0 as | — oo, to prove (16), it suffices to show that for
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any 6 > 0,

(18) limsup P{ sup | R([ns], || > 6n2} =0,

n—00 0<s<
for every fixed [ > 1 and

[ns]

(19) hm hmsup P{ sup I ZX | > 6n2} = 0.

0<s<

By ZL:O | Au|l < oo and E||Z;||? < oo (18) holds, and hence as n — oo,

n~2 sup |R([ns],1)]|

0<s<1

<n7 max lztuz ZHA I+ Z | Aul) -

1=0 u=i u=1i+1
We next prove (19). Noting that

k

k
ZX&? = i AuZZt—u for any k> 1,

t=1 u=l+1 t=1

by applying Hoélder inequality and Lemma 2.3, we have

[ns]

l
E sup ||Zx“n2 < Z | 4ul)*E max nzzt ull?

lss< u={+1

< Cm*nE|Zi|( Z [ 4u)?.
u=Il+1
Now, (19) follows immediately from the Markov inequality and

nei+1 lAull = 0 as I — oo. The proof of Theorem 3.1 is complete.
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