• Title/Summary/Keyword: multivariable system

Search Result 255, Processing Time 0.022 seconds

Robust Controller Design for Uncertain Dynamic System Using Time Delay Control and Sliding Mode Control Method (시간지연 제어와 슬라이딩모드 제어기법을 이용한 불확실한 동적 시스템의 강인 제어기 설계)

  • 박병석;이인성;윤지섭;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.225-225
    • /
    • 2000
  • We propose the hybrid robust controller for TDC(Time Delay Control) and SMC(Sliding Mode Control) method. TDC and SMC deal with the time-varying system parameters, unknown dynamics and unexpected disturbance. This controller is applied to follow the desired reference model for the uncertain time-varying overhead crane. The control performance is evaluated through simulation. The theoretical results indicate That the proposed controller shows excellent performance to an overhead crane with the uncertain time-varying parameters and disturbance.

  • PDF

THE EXISTENCE OF SOLUTIONS OF LINEAR MULTIVARIABLE SYSTEMS IN DESCRIPTOR FROM FORM

  • AASARAAI, A.
    • Honam Mathematical Journal
    • /
    • v.24 no.1
    • /
    • pp.35-41
    • /
    • 2002
  • The solutions of a homogeneous system in state space form $\dot{x}=Ax$ are to the form $x=e^{At}x_0$ and the solutions of an inhomogeneous system $\dot{x}=Ax(t)+f(t)$ are to the form $x=e^{At}x_0+{{\int}_0^t}\;e^{A(t-{\tau})}f({\tau})d{\tau}$. In this note we show that the solution of descriptor systems under some conditions exists, and is unique, moreover it is interesting to know the solutions of descriptor system are schematically like the solutions as in the state space form. Also we will give some algorithms to compute these solutions.

  • PDF

Multivariable Integrated Evaluation of GloSea5 Ocean Hindcasting

  • Lee, Hyomee;Moon, Byung-Kwon;Kim, Han-Kyoung;Wie, Jieun;Park, Hyo Jin;Chang, Pil-Hun;Lee, Johan;Kim, Yoonjae
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.605-622
    • /
    • 2021
  • Seasonal forecasting has numerous socioeconomic benefits because it can be used for disaster mitigation. Therefore, it is necessary to diagnose and improve the seasonal forecast model. Moreover, the model performance is partly related to the ocean model. This study evaluated the hindcast performance in the upper ocean of the Global Seasonal Forecasting System version 5-Global Couple Configuration 2 (GloSea5-GC2) using a multivariable integrated evaluation method. The normalized potential temperature, salinity, zonal and meridional currents, and sea surface height anomalies were evaluated. Model performance was affected by the target month and was found to be better in the Pacific than in the Atlantic. An increase in lead time led to a decrease in overall model performance, along with decreases in interannual variability, pattern similarity, and root mean square vector deviation. Improving the performance for ocean currents is a more critical than enhancing the performance for other evaluated variables. The tropical Pacific showed the best accuracy in the surface layer, but a spring predictability barrier was present. At the depth of 301 m, the north Pacific and tropical Atlantic exhibited the best and worst accuracies, respectively. These findings provide fundamental evidence for the ocean forecasting performance of GloSea5.

A study on the fuzzy logic control for boiler-turbine system (보일러 터빈 플랜트의 퍼지 논리 제어에 관한 연구)

  • 김호동;김용호;안상철;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.687-692
    • /
    • 1991
  • To reduce the complexity in constructing a fuzzy logic controller of multivariable systems, three major methods are presented. One is the method of constructing single-input-single-output fuzzy logic controllers after decoupling the target system. Another is the method of using fuzzy relation matrices which indicate the relation between each input and output. The other is the method of using the hierarchically classified inputs which dominantly influence one output than other inputs. Using the last two methods, simulation results of fuzzy logic controller implemented on 160MW boiler-turbine plant model are also shown.

  • PDF

Sliding Mode Control Design for Polytopic Models (폴리토픽 모델을 위한 슬라이딩 모드 제어기 설계)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.667-670
    • /
    • 2009
  • This paper presents an LMI-based method to design a sliding mode controller for a multivariable uncertain system with a polytopic model. In terms of LMIs an existence condition of a sliding surface is derived. And a switching feedback control law is given. Finally, a numerical design example is given to show that the proposed method can be better than the existing results.

Robust multivariable control of tandem cold mills (연속 냉간 압연시스템의 강인한 다변수 제어)

  • Kim, J.S.;Kim, C.M.;Kwak, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.66-74
    • /
    • 1994
  • A loop-shaping LQ controller is synthesized for tandem cold mills. And a new loop- shaping technique is suggested for LQ controller design. The suggested loop-shaping LQ control system is compared with the standard loop-shaping LQ control system. The simulation results show that the theickness and interstand tension control accuracy of tandem cold mills can be improved by the compensated loop-shaping LQ controller.

  • PDF

GENERAL SYSTEM OF MULTI-SEXTIC MAPPINGS AND STABILITY RESULTS

  • Abasalt Bodaghi
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.509-524
    • /
    • 2023
  • In this study, we characterize the structure of the multivariable mappings which are sextic in each component. Indeed, we unify the general system of multi-sextic functional equations defining a multi-sextic mapping to a single equation. We also establish the Hyers-Ulam and Găvruţa stability of multi-sextic mappings by a fixed point theorem in non-Archimedean normed spaces. Moreover, we generalize some known stability results in the setting of quasi-𝛽-normed spaces. Using a characterization result, we indicate an example for the case that a multi-sextic mapping is non-stable.

Noninteracting Feedbeck Control of Multivariable Nonlinear Systems (다변수 비선형시스템의 noninteracting 되먹임 제어)

  • 하인중;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.7
    • /
    • pp.501-513
    • /
    • 1987
  • Conditions for achieving noninteraction in nonlinear multivariable systems via the decomposition of state space are well established. The main contribution of this paper is to fully characterize the class of decomposing control laws. The characterization corresponds to a family of simple control laws which are applied to a standard decomposed system(SDS). The SDS is similar to the decomposed systems of Isidori, Krener, Gori-Giorgi, and Monaco but has a finer structure. The finer structure parallels the one used by Gilbert for linear systems. A weaker form of noninteraction, based on input-output behaviour, is decoupling. Some connections between decomposition and decoupling are also established. An example illustrating the importance of the results is given.

A multivariable controller design of 6 DOF motion simulator (6자유도 운동재현기의 다변수 제어기 설계)

  • 이호영;강지윤;이교일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.449-454
    • /
    • 1994
  • The Stewart Platform is one example of a motion simulator which generater 6DOF motion in space by six actuators in parallel. The presented control methrol of 6DOF motion simulator is generally classified into two types, one is SISO and the other is MIMO control type. The SISO control can't compensate for external load variation and different dynamic behavior of 6DOF motion, trerefore this type don's control motion precisely. On the other hand, the MIMO control compensates for a interference of 6DOF motion because MIMO controller is designed with 6DOF motion simulator synamics. But MIMO control of motion simulator has a complexity of 6DOF displacement feedback, because in oder to obtain feedback value we must solve the forward kinematics using measurement of cylinder length or design a state estimator, unless measurement of 6DOF displacement is possible. In this paper, a multivariable controller using H .inf. optimal control theory is designed to consider a interference of 6DOF motion and to obtain robust,precise control of system. Also in order to solve the mentioned problem of MIMO control, this paper presents a modified MIMO control model which control 6DOF motion by using feedback of measurement od cylinder length.

  • PDF