DOI QR코드

DOI QR Code

Multivariable Integrated Evaluation of GloSea5 Ocean Hindcasting

  • Lee, Hyomee (Division of Science Education & Institute of Fusion Science, Jeonbuk National University) ;
  • Moon, Byung-Kwon (Division of Science Education & Institute of Fusion Science, Jeonbuk National University) ;
  • Kim, Han-Kyoung (Division of Science Education & Institute of Fusion Science, Jeonbuk National University) ;
  • Wie, Jieun (Division of Science Education & Institute of Fusion Science, Jeonbuk National University) ;
  • Park, Hyo Jin (Jeonju Jungang Middle School) ;
  • Chang, Pil-Hun (Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Lee, Johan (Operational Systems Development Department, National Institute of Meteorological Sciences) ;
  • Kim, Yoonjae (Korean National Meteorological Satellite Center)
  • Received : 2021.09.04
  • Accepted : 2021.11.28
  • Published : 2021.12.31

Abstract

Seasonal forecasting has numerous socioeconomic benefits because it can be used for disaster mitigation. Therefore, it is necessary to diagnose and improve the seasonal forecast model. Moreover, the model performance is partly related to the ocean model. This study evaluated the hindcast performance in the upper ocean of the Global Seasonal Forecasting System version 5-Global Couple Configuration 2 (GloSea5-GC2) using a multivariable integrated evaluation method. The normalized potential temperature, salinity, zonal and meridional currents, and sea surface height anomalies were evaluated. Model performance was affected by the target month and was found to be better in the Pacific than in the Atlantic. An increase in lead time led to a decrease in overall model performance, along with decreases in interannual variability, pattern similarity, and root mean square vector deviation. Improving the performance for ocean currents is a more critical than enhancing the performance for other evaluated variables. The tropical Pacific showed the best accuracy in the surface layer, but a spring predictability barrier was present. At the depth of 301 m, the north Pacific and tropical Atlantic exhibited the best and worst accuracies, respectively. These findings provide fundamental evidence for the ocean forecasting performance of GloSea5.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant funded by the government of Korea (MSIT; No. 2019R1A2C100 8549) and the Korea Meteorological Administration Research and Development Program "Development of Climate Prediction System" under Grant (1365003054). The authors would like to thank Prof. Zhongfeng Xu for generously offering the scripts used to calculate the statistical metrics.

References

  1. APEC Climate Center, 2021, SST Outlook. https://apcc21.org/ser/enso.do?lang=en (February 16th 2021)
  2. Barnston, A.G. and Tippett, M.K., 2013, Predictions of Nino3.4 SST in CFSv1 and CFSv2: a diagnostic comparison. Climate Dynamics, 41, 1615-1633, https://doi.org/10.1007/s00382-013-1845-2.
  3. Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R. L. H., Menard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J., 2011, The Joint UK Land Environment Simulator (JULES), model description-Part 1: Energy and water fluxes. Geoscientific Model Development, 4, 677-699, https://doi.org/10.5194/gmd-4-677-2011.
  4. Blockley, E. W., Martin, M. J., and Hyder, P., 2012, Validation of FOAM near-surface ocean current forecasts using Lagrangian drifting buoys. Ocean Science, 8(4), 551-565, https://doi.org/10.5194/os-8-551-2012.
  5. Blockley, E. W., Martin, M. J., McLaren, A. J., Ryan, A. G., Waters, J., Lea, D. J., Mirouze, I., Peterson, K. A., Sellar, A., and Storkey, D., 2014, Recent development of the Met Office operational ocean forecasting system: an overview and assessment of the new Global FOAM forecasts. Geoscientific Model Development, 7, 2613-2014, https://doi.org/10.5194/gmd-7-2613-2014.
  6. Bonjean, F. and Lagerloef, G. S. E., 2002, Diagnostic model and analysis of the surface currents in the tropical Pacific Ocean. Journal of Physical Oceanography, 32, 2938-2954. https://doi.org/10.1175/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2
  7. Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J., and Shelly, A., 2012, Unified modeling and prediction of weather and climate: A 25-year journey. Bulletin of the American Meteorological Society, 93, 1865-1877, https://doi.org/10.1175/BAMS-D-12-00018.1.
  8. Carton, J.A., Chepurin, G.A., and Chen, L., 2018, SODA3: A new ocean climate reanalysis. Journal of Climate, 31(17), 6967-6983, https://doi.org/10.1175/JCLI-D-18-0149.1.
  9. Duan, W. and Wei, C., 2012, The 'spring predictability barrier' for ENSO predictions and its possible mechanism: Results from a fully coupled model. International Journal of Climatology, 33(5), 1280-1292, https://doi.org/10.1002/joc.3513.
  10. Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J., Fairall, C. W., Miller, S. D., Mahrt, L., Vickers, D., and Hersbach, H., 2013, On the exchange of momentum over the open ocean. Journal of Physical Oceanography, 43, 1589-1610, https://doi.org/10.1175/JPO-D-12-0173.1.
  11. Fu, Y., Lu, R., Wang, H., and Yang, X., 2013, Impact of overestimated ENSO variability in the relationship between ENSO and East Asian summer rainfall. Journal of Geophysical Research: Atmospheres, 118, 6200-6211, https://doi.org/10.1002/jgrd.50482.
  12. Good, S. A., Martin, M. J, and Rayner, N. A., 2013, EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. Journal of Geophysical Research: Oceans, 118(12), 6704-6716, https://doi.org/10.1002/2013JC009067.
  13. Ham, H., Lee, S.-M., Hyun, Y.-K., and Kim, Y., 2019, Assessment of monthly ensemble prediction data based on improvement of climate prediction system at KMA. Atmosphere, 29(2), 149-164, https://doi.org/10.14191/Atmos.2019.29.2.149.
  14. Haustein, K., Otto, F. E. L., Uhe, P., Schaller, N., Allen, M. R., Hermanson, L., Christidis, N., McLean, P., and Cullen, H., 2016, Real-time extreme weather event attribution with forecast seasonal SSTs. Environmental Research Letters, 11(6), 064006, https://doi.org/10.1088/1748-9326/11/6/064006.
  15. Heo, S.-I., Hyun, Y.-K., Ryu, Y., Kan, H.-S., Lim, Y.-J., and Kim, Y., 2019, An assessment of applicability of heat waves using extreme forecast index in KMA climate prediction system (GloSea5). Atmosphere, 29(3), 257-267, https://doi.org/10.14191/Atmos.2019.29.3.257.
  16. Hudson, D., Marshall, A. G., Yin, Y., Alves, O., and Hendon, H. H., 2013, Improving intraseasonal prediction with a new ensemble generation strategy. Monthly Weather Review, 141(12), 4429-4449, https://doi.org/10.1175/MWR-D-13-00059.1.
  17. Hunke, E. C. and Lipscomb, W. H., 2010, CICE: The sea ice model documentation and software user's manual, version 4.1. Los Alamos National Laboratory, Technical report LA-CC-06-012, 75 p.
  18. Jackson, L. C., Dubois, C., Forget, G., Haines, K., Harrison, M., Iovino, D., Kohl A., Mignac, D., Masina, S., Peterson, K. A., Piecuch, C. G., Roberts, C. D., Robson, J., Storto, A., Toyoda, T., Valdivieso, M., Wilson, C., Wang, Y., and Zuo, H., 2019, The mean state and variability of the North Atlantic circulation: A perspective from ocean reanalyses. Journal of Geophysical Research: Oceans, 124(12), 9141-9170, https://doi.org/10.1029/2019JC015210.
  19. Jackson, L. C., Kahana, R., Graham, T., Ringer, M. A., Woollings, T., Mecking, J.V., and Wood, R.A., 2015, Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Climate Dynamics, 45(11), 3299-3316, https://10.1007/s00382-015-2540-2.
  20. Jeong, Y. Y., Moon, I.-J., and Chang, P.-H., 2016, Accuracy of short-term ocean prediction and the effect of atmosphere-ocean coupling on KMA Global Seasonal Forecast System (GloSea5) during the development of ocean stratification. Atmosphere, 26(4), 599-615, https://doi.org/10.14191/Atmos.2016.26.4.599.
  21. Ji, M., Kumar, A., and Leetmaa, A., 1994, A multiseason climate forecast system at the National Meteorological Center. Bulletin of the American Meteorological Society, 74(4), 569-578.
  22. Jung, M.-I., Son, S.-W., Choi, J., and Kang, H.-S., 2015, Assessment of 6-month lead prediction skill of the GloSea5 hindcast experiment. Atmosphere, 25(2), 323-337, https://dx.doi.org/10.14191/Atmos.2015.25.2.323.
  23. Korea Meteorological Administration, 2014, Development of the Diagnostic System for the Korea-UK Joint Climate Prediction System (II). Korea Meteorological Administration, 2014, 329 p.
  24. Larson, S. M. and Kirtman, B. P., 2017, Drivers of coupled model ENSO error dynamics and the spring predictability barrier. Climate Dynamics, 48, 3631-3644, https://doi.org/10.1007/s00382-016-3290-5.
  25. Lee, H., Chang, P.-H., Kang, K., Kang, H.-S., and Kim, Y., 2018, Assessment of ocean surface current forecasts from high resolution Global Seasonal Forecast System version 5. Ocean and Polar Research, 40(3), 99-114, https://dx.doi.org/10.4217/OPR.2018.40.3.099.
  26. Lee, H., Moon, B.-K., Kim, H.-K., Wie, J., Park, H. J., Chang, P.-H., Lee, J., and Kim, Y., 2021, Supplementary Materials for Multivariable Integrated Evaluation of GloSea5-GC2 Ocean Hindcasting. https://doi.org/10.5281/zenodo.5707825 (November 17th 2021)
  27. Lee, S.-M., Lee, J., Ko, A.-R., Hyun, Y.-K., and Kim, Y., 2020a, Seasonal forecasting of tropical storms using GloSea5 hindcast. Atmosphere, 30(3), 209-220, https://doi.org/10.14191/ATMOS.2020.30.3.209.
  28. Lee, S. S., Lee. J.-Y, Ha, K.-J., Wang, B., and Schemm J. K. E., 2011, Deficiencies and possibilities for long-lead coupled climate prediction of the Western North Pacific-East Asian summer monsoon. Climate Dynamics, 36, 1173-1188. https://doi.org/10.1007/s00382-010-0832-0
  29. Lee, T., Speich, S., Lorenzoni, L., Chiba, S., Muller-Karger, F. E., Dai, M,, Kabo-Bah, A. T., Siddorn, J., Manley, J., Snoussi, M., amd Chai, F., eds., 2020b, Oceanobs' 19: An Ocean of Opportunity. Volume I. Lausanne: Frontiers Media SA, 783 p, https://doi.org/10.3389/978-2-88963-118-6.
  30. Lima, L. N., Pezzi, L. P., Penny, S. G., and Tanajura, C. A. S., 2019, An investigation of ocean model uncertainties through ensemble forecast experiments in the Southwest Atlantic Ocean. Journal of Geophysical Research: Oceans, 124(1), 432-452. https://doi.org/10.1029/2018jc013919
  31. Liu, Y., Ren, H.L., Scaife, A.A., and Li, C., 2018, Evaluation and statistical downscaling of East Asian summer monsoon forecasting in BCC and MOHC seasonal prediction systems. Quarterly Journal of the Royal Meteorological Society, 144(717), 2798-2811, https://doi.org/10.1002/qj.3405.
  32. Lu, B., Ren, H. L., Scaife, A. A., Wu, J., Dunstone, N., Smith, D., Wan, J., Eade, R., MacLachlan, C., and Gordon, M., 2018, An extreme negative Indian Ocean Dipole event in 2016: Dynamics and predictability. Climate Dynamics, 51, 89-100, https://doi.org/10.1007/s00382-017-3908-2.
  33. Ma, X., Jing, Z., Chang, P., Liu, X., Montuoro, R., Small, R. J., Bryan, F. O., Greatbatch, R. J., Brandt, P., Wu, D., Lin, X., and Wu, L., 2016, Western boundary currents regulated by interaction between ocean eddies and the atmosphere. Nature, 535(7613), 533-537, https://doi.org/10.1038/nature18640.
  34. MacLachlan, C., Arribas, A., Peterson, K. A., Maidens, A., Fereday, D., Scaife, A. A., Gordon, M., Vellinga, M., Williams, A., Comer, R. E., Camp, J., Xavier, P., and Madec, G., 2015, Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Quarterly Journal of the Royal Meteorological Society, 141, 1072-1084, https://doi.org/10.1002/qj.2396.
  35. Madec, G., 2008, NEMO Ocean Engine, Note du Pole de Modelisation. Institut Pierre-Simon Laplace (IPSL), 27, 300 p.
  36. Madec, G, Romain, B.-B., Pierre-Antoine, B., Clement, B., Diego, B., Daley, C., Jerome, C., Emanuela, C., Andrew, C., Damiano, D., Christian, E., Simona, F., Tim, G., James, H., Doroteaciro, I., Dan, L., Claire, L., Tomas, L., Nicolas, M., Sebastien, M., Silvia, M., Julien, P., Clement, R., Dave, S., Andrea, S., and Martin, V., 2016, NEMO ocean engine. Notes du Pole de modelisation, l'Institut Pierre-Simon Laplace (IPSL), v3.6-patch Number 27, 412 p. https://doi.org/10.5281/zenodo.3248739 (August 24th 2021)
  37. Magnusson, L., Alonso-Balmaseda, M., Corti, S., Molteni, F., and Stockdale, T., 2013, Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors. Climate dynamics, 41(9-10), 2393-2409, https://doi.org/10.1007/s00382-012-1599-2.
  38. Meehl, G. A., Goddard, L., Boer, G., Burgman, R., Branstator, G., Cassou, C., Corti, S., Danabasoglu, G., Doblas-Reyes, F., Hawkins, E., Karspeck, A., Kimoto, M., Kumar, A., Matei, D., Mignot, J., Msadek, R., Navarra, A., Pohlmann, H., Rienecker, M., Rosati, T., Schneider, E., Smith, D., Sutton, R., Teng, H., van Oldenborgh, G. J., Vecchi, G., and Yeager, S., 2014, Decadal climate prediction: An update from the trenches. Bulletin of the American Meteorological Society, 95(2), 243-267, https://doi.org/10.1175/BAMSD-12-00241.1.
  39. Met Office, 2021, Met Office seasonal prediction system: GloSea5. https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/user-guide/technical-glosea5 (February 10th 2021).
  40. NMOC, 2013, Operational Upgrade to Predictive Ocean Atmosphere Model for Australia (POAMA-M24) (NMOC Operations Bulletin No. 96). Bureau of Meteorology, Australia, 27 p, http://www.bom.gov.au/ australia/charts/bulletins/apob96.pdf.
  41. S2S Prediction Project, 2021, S2S Prediction Project. http://s2sprediction.net (April 12th 2021).
  42. Siedlecki, S. A., Kaplan, I. C., Hermann, A. J., Nguyen, T. T., Bond, N. A., Newton, J. A., Williams, G. D., Peterson, W. T., Alin, S. R., and Feely, R. A., 2016, Experiments with Seasonal Forecasts of ocean conditions for the Northern region of the California Current upwelling system. Scientific Reports, 6(1), 27203, https://doi.org/10.1038/srep27203.
  43. Smith, D.M., Scaife, A.A., Eade, R., and Knight, J. R., 2016, Seasonal to decadal prediction of the winter North Atlantic Oscillation: Emerging capability and future prospects. Quarterly Journal of the Royal Meteorological Society, 142(695), 611-617, https://doi.org/10.1002/qj.2479.
  44. Song, K., Kim, H., Son, S.-W., Kim, S.-W., Kang, H.-S., and Hyun, Y.-K., 2018, Subseasonal-to-seasonal (S2S) Prediction of GloSea5 Model: Part 2. Stratospheric sudden warming. Atmosphere, 28(2), 123-139, https://doi.org/10.14191/Atmos.2018.28.2.123.
  45. Subramanian, A. C., Balmaseda, M. A., Centurioni, L., Chattopadhyay, R., Cornuelle, B. D., DeMott, C., Flatau, M., Fujii, Y., Giglio, D., Gille, S. T., Hamill, T. M., Hendon, H., Hoteit, I., Kumar, A., Lee, J.-H., Lucas, A.-J., Mahadevan, A., Matsueda, M., Nam, S., Paturi1, S., Penny, S. G., Rydbeck, A., Sun, R., Takaya, Y., Tandon, A., Todd, R. E., Vitart, F., Yuan, D., and Zhang, C., 2019, Ocean observations to improve our understanding, modeling, and forecasting of subseasonalto-seasonal variability. Frontiers in Marine Science, 6, 427, https://doi.org/10.3389/fmars.2019.00427.
  46. Vitart, F. and Brown, A., 2019, S2S Forecasting: Towards Seamless Prediction. WMO Bulletin, 68(1), 70-74, https://public.wmo.int/en/resources/bulletin/s2s-forecasting-towards-seamless-prediction.
  47. Walters, D. N., Best, M. J., Bushell, A. C., Copsey, D., Edwards, J. M., Falloon, P. D., Harris, C. M., Lock, A. P., Manners, J. C., Morcrette, C. J., Roberts, M. J., Stratton, R. A., Webster, S., Wilkinson, J. M., Willett, M. R., Boutle, I. A., Earnshaw, P. D., Hill, P. G., MacLachlan, C., Martin, G. M., Moufouma-Okia, W., Palmer, M. D., Petch, J. C., Rooney, G. G., Scaife, A. A., and Williams, K. D., 2011, The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations. Geoscientific Model Development, 4, 919-941, https://doi.org/10.5194/gmd-4-919-2011.
  48. Williams, K. D., Harris, C. M., Bodas-Salcedo, A., Camp, J., Comer, R. E., Copsey, D., Fereday, D., Graham, T., Hill, R., Hinton, T., Hyder, P., Ineson, S., Masato, G., Milton, S. F., Roberts, M. J., Rowell, D. P., Sanchez, C., Shelly, A., Sinha, B., Walters, D. N., West, A., Woollings, T., and Xavier, P. K., 2015, The Met Office Global Coupled model 2.0 (GC2) configuration. Geoscientific Model Development, 8, 1509-1524, https://doi.org/10.5194/gmd-8-1509-2015.
  49. Woolnough, S. J., Vitart, F., and Balmaseda, M. A., 2007, The role of the ocean in the Madden-Julian oscillation: Implications for MJO prediction. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 133(622), 117-128, https://doi.org/10.1002/qj.4.
  50. World Meteorological Organization, 2013, Sub-seasonal to Seasonal Prediction: Research Implementation Plan. World Meteorological Organization (WMO), 71 p.
  51. World Meteorological Organization, 2020, Guidance on Operational Practices for Objective Seasonal Forecasting. World Meteorological Organization (WMO) WMO-No. 1246, 106 p.
  52. Wu, L., Rutgersson, A., Sahlee, E., and Larsen, X. G., 2016, Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model. Journal of Geophysical Research: Oceans, 121(7), 4633-4648, https://doi.org/10.1002/2015JC011576.
  53. Xu, Z., Han, Y., and Fu, C., 2017, Multivariable integrated evaluation of model performance with the vector field evaluation diagram. Geoscientific Model Development, 10, 3805-3820, https://doi.org/10.5194/gmd-10-3805-2017.
  54. Xu, Z., Hou, Z., Han, Y., and Guo, W., 2016, A diagram for evaluating multiple aspects of model performance in simulating vector fields. Geoscientific Model Development, 9, 4365-4380, https://doi.org/10.5194/gmd-9-4365-2016.
  55. Zhou, X., Luo, J. J., Alves, O., and Hendon, H., 2015, Comparison of GLOSEA5 and POAMA2. 4 hindcasts 1996-2009: Ocean focus. Bureau of Meteorology, 010, 95 p.