• 제목/요약/키워드: multiplication ideal

검색결과 40건 처리시간 0.021초

ON S-MULTIPLICATION RINGS

  • Mohamed Chhiti;Soibri Moindze
    • 대한수학회지
    • /
    • 제60권2호
    • /
    • pp.327-339
    • /
    • 2023
  • Let R be a commutative ring with identity and S be a multiplicatively closed subset of R. In this article we introduce a new class of ring, called S-multiplication rings which are S-versions of multiplication rings. An R-module M is said to be S-multiplication if for each submodule N of M, sN ⊆ JM ⊆ N for some s ∈ S and ideal J of R (see for instance [4, Definition 1]). An ideal I of R is called S-multiplication if I is an S-multiplication R-module. A commutative ring R is called an S-multiplication ring if each ideal of R is S-multiplication. We characterize some special rings such as multiplication rings, almost multiplication rings, arithmetical ring, and S-P IR. Moreover, we generalize some properties of multiplication rings to S-multiplication rings and we study the transfer of this notion to various context of commutative ring extensions such as trivial ring extensions and amalgamated algebras along an ideal.

ON CANCELLATION IDEALS

  • Choi, Chang-Woo;Park, Young-Soo
    • 대한수학회논문집
    • /
    • 제10권4호
    • /
    • pp.783-787
    • /
    • 1995
  • In this paper we characterize cancellation ideals in terms of multiplication ideals. Especially, we find a condition for an ideal generated by three elements to be a cancellation ideal.

  • PDF

FUZZY MULTIPLICATION RINGS

  • Lee, Dong-Soo;Park, Chul-Hwan;Kim, Jong-Heon
    • East Asian mathematical journal
    • /
    • 제21권2호
    • /
    • pp.183-190
    • /
    • 2005
  • We will introduce the notion of fuzzy multiplication ring using fuzzy ideal. In this paper we will show that a fuzzy ideal I is primary if radI is prime. And we will investigate some properties related the theorem.

  • PDF

ON MULTIPLICATION MODULES (II)

  • Cho, Yong-Hwan
    • 대한수학회논문집
    • /
    • 제13권4호
    • /
    • pp.727-733
    • /
    • 1998
  • In this short paper we shall find some properties on multiplication modules and prove three theorems.

  • PDF

IDEALS AND SUBMODULES OF MULTIPLICATION MODULES

  • LEE, SANG CHEOL;KIM, SUNAH;CHUNG, SANG-CHO
    • 대한수학회지
    • /
    • 제42권5호
    • /
    • pp.933-948
    • /
    • 2005
  • Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for every submodule N of M there exists an ideal I of R such that N = 1M. Let M be a non-zero multiplication R-module. Then we prove the following: (1) there exists a bijection: N(M)$\bigcap$V(ann$\_{R}$(M))$\rightarrow$Spec$\_{R}$(M) and in particular, there exists a bijection: N(M)$\bigcap$Max(R)$\rightarrow$Max$\_{R}$(M), (2) N(M) $\bigcap$ V(ann$\_{R}$(M)) = Supp(M) $\bigcap$ V(ann$\_{R}$(M)), and (3) for every ideal I of R, The ideal $\theta$(M) = $\sum$$\_{m(Rm :R M) of R has proved useful in studying multiplication modules. We generalize this ideal to prove the following result: Let R be a commutative ring with identity, P $\in$ Spec(R), and M a non-zero R-module satisfying (1) M is a finitely generated multiplication module, (2) PM is a multiplication module, and (3) P$^{n}$M$\neq$P$^{n+1}$ for every positive integer n, then $\bigcap$$^{$\_{n=1}$(P$^{n}$ + ann$\_{R}$(M)) $\in$ V(ann$\_{R}$(M)) = Supp(M) $\subseteq$ N(M).

Multiplication Modules and characteristic submodules

  • Park, Young-Soo;Chol, Chang-Woo
    • 대한수학회보
    • /
    • 제32권2호
    • /
    • pp.321-328
    • /
    • 1995
  • In this note all are commutative rings with identity and all modules are unital. Let R be a ring. An R-module M is called a multiplication module if for every submodule N of M there esists an ideal I of R such that N = IM. Clearly the ring R is a multiplication module as a module over itself. Also, it is well known that invertible and more generally profective ideals of R are multiplication R-modules (see [11, Theorem 1]).

  • PDF

A HOMOLOGICAL CHARACTERIZATION OF PRÜFER v-MULTIPLICATION RINGS

  • Zhang, Xiaolei
    • 대한수학회보
    • /
    • 제59권1호
    • /
    • pp.213-226
    • /
    • 2022
  • Let R be a ring and M an R-module. Then M is said to be regular w-flat provided that the natural homomorphism I ⊗R M → R ⊗R M is a w-monomorphism for any regular ideal I. We distinguish regular w-flat modules from regular flat modules and w-flat modules by idealization constructions. Then we give some characterizations of total quotient rings and Prüfer v-multiplication rings (PvMRs for short) utilizing the homological properties of regular w-flat modules.