• Title/Summary/Keyword: multiple tool path

Search Result 41, Processing Time 0.03 seconds

Development of Exit Burr Identification Algorithm on Multiple Feature Workpiece and Multiple Tool Path (복합형상 및 다중경로에 대한 Exit Burr 판별 알고리듬의 개발- 스플라인을 포함한 Exit Burr의 해석 -)

  • Kim, Ji-Hwan;Lee, Jang-Beom;Kim, Young-Jin
    • IE interfaces
    • /
    • v.18 no.3
    • /
    • pp.247-252
    • /
    • 2005
  • In the automated production environment in the present days, the minimization of manual operation becomes a very important factor in increasing the efficiency of the production system. The exit burr produced through the milling operation on the edge of workpiece usually requires manual deburring process to enhance the level of precision of the resulting product. So far, researchers have developed various methods to understand the formation of exit burr in cutting process. One method to analytically identify the formation of exit burr was to use the geometrical information of CAD and CAM data used in automated machining. This method, in turn, generated the information resulting from the analysis such as burr type, cutting region, and exit angle. Up to now, the geometrical data were restricted to the single feature and single path. In this paper, a method to deal with the complicated geometric features such as line segment, arc, hole, and spline will be presented and validated using the field data. This method also deals with the complex workpiece shape which is a combination of multiple features. As for the cutting path, multiple tool path is analyzed in order to simulate the real cutting process. All this analysis is combined into a Windows based software and real data are used to validate the program in the conclusion.

Offset of STL Model Generated from Solid Model (솔리드 STL 모델의 옵셋 방법)

  • Kim, Su-Jin;Yang, Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.202-211
    • /
    • 2005
  • This paper introduces and illustrates the results of a new method fer offsetting triangular mesh by moving all vertices along the multiple normal vectors of a vertex. The multiple normal vectors of a vertex are set the same as the normal vectors of the faces surrounding the vertex, while the two vectors with the smallest difference are joined repeatedly until the difference is smaller than allowance. Offsetting with the multiple normal vectors of a vertex does not create a gap or overlap at the smooth edges, thereby making the mesh size uniform and the computation time short. In addition, this offsetting method is accurate at the sharp edges because the vertices are moved to the normal directions of faces and joined by the blend surface. The method is also useful for rapid prototyping and tool path generation if the triangular mesh is tessellated part of the solid models with curved surfaces and sharp edges. The suggested method and previous methods are implemented on a PC using C++ and illustrated using an OpenGL library.

Offset of STL Model Generated from Multiple Surfaces (열린 STL 모델의 옵셋 방법)

  • Kim Su-Jin;Yang Min-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.187-193
    • /
    • 2006
  • This paper introduces and illustrates the results of a new method for offsetting the triangular mesh generated from multiple surfaces. The meshes generated from each surface are separated each other and normal directions are different. The face normal vectors are flipped to upward and the lower faces covered by upper faces are deleted. The virtual normal vectors are introduced and used to of feet boundary. It was shown that new method is better than previous methods in offsetting the triangular meshes generated from multiple surfaces. The introduced offset method was applied for 3-axis tool path generation system and tested by NC machining.

Tool-Path Generation using Sweep line Algorithm (스윕라인 알고리즘을 이용한 공구경로의 생성)

  • Seong, Kil-Young;Jang, Min-Ho;Park, Sang-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • Proposed in the paper is an algorithm to generate tool-path for sculptured surface machining. The proposed algorithm computes tool path by slicing offset triangular mesh, which is the CL-surface (Cutter Location surface). Since the offset triangular mesh includes invalid triangles and self-intersections, it is necessary to remove invalid portions. For the efficient removal of the invalid portions, we extended the sweep line algorithm. The extended sweep line algorithm removes invalid portions very efficiently, and it also considers various degeneracy cases including multiple intersections and overlaps. The proposed algorithm has been implemented and tested with various examples.

Design of component layout and tool path for machining multiple components

  • 이창근;임석철
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.610-614
    • /
    • 1996
  • In machining muliple components fixed on the same pallet of a NC machine, it is very important to minimize the total time required to finish the machining by carefully determining the component layout on the pallet, and the tool path of NC machine, and the sequence of tools to be used. In this paper, a linear integer programming model is presented to obtain an efficient layout; and a two-phased heuristic algorithm is proposed to minimize the total time for machining multiple components. Numerical examples are given for the case of identical components and nonidentical components, respectively. The result of either case shows significant reduction of 7.2~15.0% in the total time required to finish the machining.

  • PDF

Cutting Process Simulation in Transient Cuts (과도 절삭에서의 절삭 공정 시뮬레이션)

  • 고정훈;조동우;윤원수;김주한
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.447-452
    • /
    • 2001
  • In most of the existing mechanistic models, the cutting process simulation is often restricted to a single path machining operation under a fixed cutting condition. Complex cutting processes such as die or mold manufacturing, however, are performed under two- or three-dimensional multiple tool paths. Since the tool paths in CNC machining are composed of line and arc segments, transient cuts are frequently occured due to the multiple paths. Even in steady cuts, the width of cut is varied with each segment. In this regard, this paper deals with the development of process simulation system for transient cuts, where continuously changing cutting configuration is computed, and then the cutting forces are predicted.

  • PDF

Implementation of WiBro Wave2 Cell Plan Tool (WiBro Wave2 Cell Plan Tool 구현)

  • Jeon, Hyun-Cheol
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.233-236
    • /
    • 2008
  • There are several kinds of service standards for 3G($3^{rd}$-Generation) wireless communication as WCDMA, CDMA2000 and WiBro(Wireless Broadband Internet). Especially WiBro Wave2 system is a marked currnt issue. In this paper, we describe on the cell plan tool to desgin WiBro Wave2 network. For this, we treat from basic theory to practical substance to produce new(or modified) path loss prediction model for 2.3GHz. And we explain the method how to implement new technology MIMO(Multiple Input Multiple Output) deployed in Wave2 system. Also we emphasize on the importance of LOS(Line Of Sight) analysis in WiBro network design.

  • PDF

Cutter-workpiece engagement determination for general milling using triangle mesh modeling

  • Gong, Xun;Feng, Hsi-Yung
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.151-160
    • /
    • 2016
  • Cutter-workpiece engagement (CWE) is the instantaneous contact geometry between the cutter and the in-process workpiece during machining. It plays an important role in machining process simulation and directly affects the calculation of the predicted cutting forces and torques. The difficulty and challenge of CWE determination come from the complexity due to the changing geometry of in-process workpiece and the curved tool path of cutter movement, especially for multi-axis milling. This paper presents a new method to determine the CWE for general milling processes. To fulfill the requirement of generality, which means for any cutter type, any in-process workpiece shape, and any tool path even with self-intersections, all the associated geometries are to be modeled as triangle meshes. The involved triangle-to-triangle intersection calculations are carried out by an effective method in order to realize the multiple subtraction Boolean operations between the tool and the workpiece mesh models and to determine the CWE. The presented method has been validated by a series of case studies of increasing machining complexity to demonstrate its applicability to general milling processes.

The Optimization Design of Multiple Access Point placement for wireless LAN (무선 LAN에서 다중 Access Point 위치의 최적화 설계)

  • Lim, Guk-Chan;Kang, Alberto;Choi, Sung-Hun
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.371-374
    • /
    • 2002
  • The optimal AP placement for wireless LAN is important factor for improving service quality and reducing cost. Logical area property, which is user's frequently posed place, must be considerated for flexible design. This paper proposes optimal multiple AP placement method based on path loss model which is one of radio prediction tool. The proposed method can got flexibility in multiple AP placement using user's defined parameter and tile optimization design uses Hopfield network algorithm The result of simulation shows that the proposed optimization design of multiple AP placement can improve service quality for wireless LAN.

  • PDF

A Study on tool life in the high speed machining of small-size end mill by factorial design of experiments and regression model (요인 실험계획법 및 회귀분석을 이용한 소경 엔드밀의 공구수명에 대한 연구)

  • Lim P.;Park S.Y.;Yang G.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.993-996
    • /
    • 2005
  • High speed machining(HSM) technique is widely used in the appliance, automobile part and mold industries, which has many advantages such as good quality, low cost and rapid machining time. but it also has problems like tool break, smooth tool path, and so on. In particular, small size end mill is easy to break, so it must be changed before interrupting operation. Generally, the tool life of small size end mill is effected by the milling conditions whose evaluated parameters are spindle, feedrate, and width of cut. The experiments are carried out by full factorial design of experiments using and orthogonal array. This paper shows optimal combination and mathematical model for tool life, and the analysis of variance(ANOVA) is employed to analyze the main effects and the interactions of these milling parameters and the second-order polynomial regression model with three independent variables is estimated to predict tool life by multiple regression analysis.

  • PDF