References
- Yip-Hoi D, Huang X. Cutter/workpiece engagement feature extraction from solid models for end milling. ASME Journal of Manufacturing Science and Engineering 2006;128:249-60. https://doi.org/10.1115/1.1948395
- El-Mounayri H, Elbestawi MA, Spence AD, Bedi S. General geometric modelling approach for machining process simulation. The International Journal of Advanced Manufacturing Technology 1997;13:237-47. https://doi.org/10.1007/BF01179605
- Imani BM, Sadeghi MH, Elbestawi MA. An improved process simulation system for ball-end milling of sculptured surfaces. The International Journal of Machine Tools and Manufacture 1998;38:1089-107. https://doi.org/10.1016/S0890-6955(97)00074-6
- Bailey T, Elbestawi MA, El-Wardany TI, Fitzpatrick P. Generic simula-tion approach for multi-axis machining, Part 1: modeling methodology. ASME Journal of Manufacturing Science and Engineering 2002;124: 624-33. https://doi.org/10.1115/1.1468863
- Sadeghi MH, Haghighat H, Elbestawi MA. A solid modeler based ball-end milling process simulation. The International Journal of Advanced Manufacturing Technology 2003;22:775-85. https://doi.org/10.1007/s00170-002-1452-6
- Fussell BK, Jerard RB, Hemmett JG. Modeling of cutting geometry and forces for 5-axis sculptured surface machining. Computer-Aided Design 2003;35:333-46. https://doi.org/10.1016/S0010-4485(02)00055-6
- Yao Z, Joneja A. Computing cutter engagement values in milling tessellated free-form surfaces. ASME Journal of Computing and Informa-tion Science in Engineering 2010;10:041005. https://doi.org/10.1115/1.3527074
- Larue A, Altintas Y. Simulation of flank milling processes. The Interna-tional Journal of Machine Tools and Manufacture 2005;45:549-59. https://doi.org/10.1016/j.ijmachtools.2004.08.020
- Aras E, Yip-Hoi D. Geometric modeling of cutter/workpiece engagements in three-axis milling using polyhedral representations. ASME Journal of Computing and Information Science in Engineering 2008;8:031007. https://doi.org/10.1115/1.2960490
- Ferry W, Yip-Hoi D. Cutter-workpiece engagement calculations by parallel slicing for five-axis flank milling of jet engine impellers. ASME Journal of Manufacturing Science and Engineering 2008;130:051011. https://doi.org/10.1115/1.2927449
- Wang WP, Wang KK. Geometric modeling for swept volume of moving solids. Computer Graphics and Applications 1986;6:8-17.
- Chiou C-J, Lee Y-S. A shape-generating approach for multi-axis machining G-buffer models. Computer-Aided Design 1999;31:761-76. https://doi.org/10.1016/S0010-4485(99)00069-X
- Chiou C-J, Lee Y-S. Swept surface determination for five-axis numerical control machining. The International Journal of Machine Tools and Manufacture 2002;42:1497-507. https://doi.org/10.1016/S0890-6955(02)00110-4
- Du S, Surmann T, Webber O, Weinert K. Formulating swept profiles for five-axis tool motions. The International Journal of Machine Tools and Manufacture 2005;45:849-61. https://doi.org/10.1016/j.ijmachtools.2004.11.006
- Sheltami K, Bedi S, Ismail F. Swept volumes of toroidal cutters using generating curves. The International Journal of Machine Tools and Manufacture 1998;38:855-70. https://doi.org/10.1016/S0890-6955(97)00053-9
- Roth D, Bedi S, Ismail F, Mann S. Surface swept by a toroidal cutter during 5-axis machining. Computer-Aided Design 2001;33:57-63. https://doi.org/10.1016/S0010-4485(00)00063-4
- Aras E. Generating cutter swept envelopes in five-axis milling by two-parameter families of spheres. Computer-Aided Design 2009;41:95-105. https://doi.org/10.1016/j.cad.2009.01.004
- Gong H, Wang N. Analytical calculation of the envelope surface for generic milling tools directly from CL-data based on the moving frame method. Computer-Aided Design 2009;41:848-55. https://doi.org/10.1016/j.cad.2009.05.004
- Lee SW, Nestler A. Complete swept volume generation, Part I: swept volume of a piecewise C1-continuous cutter at five-axis milling via Gauss map. Computer-Aided Design 2011;43:427-41. https://doi.org/10.1016/j.cad.2010.12.010
- Lee SW, Nestler A. Complete swept volume generation, Part II: NC simulation of self-penetration via comprehensive analysis of envelope profiles. Computer-Aided Design 2011;43:442-56. https://doi.org/10.1016/j.cad.2010.12.012
- Blackmore D, Leu MC, Wang LP. The sweep-envelope differential equation algorithm and its application to NC machining verification. Computer-Aided Design 1997;29:629-37. https://doi.org/10.1016/S0010-4485(96)00101-7
- Altintas Y, Kersting P, Biermann D, Budak E, Denkena B, Lazoglu I. Virtual process systems for part machining operations. CIRP Annals -Manufacturing Technology 2014;63:585-605. https://doi.org/10.1016/j.cirp.2014.05.007
- Chung YC, Park JW, Shin H, Choi BK. Modeling the surface swept by a generalized cutter for NC verification. Computer-Aided Design 1998;30: 587-94. https://doi.org/10.1016/S0010-4485(97)00033-X
- Aras E, Feng HY. Vector model-based workpiece update in multi-axis milling by moving surface of revolution. The International Journal of Advanced Manufacturing Technology 2011;52:913-27. https://doi.org/10.1007/s00170-010-2799-8
- Jerard RB, Hussaini SZ, Drysdale RL, Schaudt B. Approximate methods for simulation and verification of numerically controlled machining programs. The Visual Computer 1989;5:329-48. https://doi.org/10.1007/BF01999101
- Park JW, Shin YH, Chung YC. Hybrid cutting simulation via discrete vector model. Computer-Aided Design 2005;37:419-30. https://doi.org/10.1016/j.cad.2004.07.003
- Lee SW, Nestler A. Virtual workpiece: workpiece representation for material removal process. The International Journal of Advanced Manufacturing Technology 2012;58:443-63. https://doi.org/10.1007/s00170-011-3431-2
- Gong X, Feng HY. Triangle mesh based in-process workpiece update for general milling processes. In: Proceedings of the ASME 2013 Interna-tional Design Engineering Technical Conferences & Computers and Information in Engineering Conference; Aug 4-7, 2013; Portland, Oregon; Paper DETC2013-12408.
- Bernardini F, Mittleman J, Rushmeier H, Silva C, Taubin G. The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics 1999;5:349-59. https://doi.org/10.1109/2945.817351
- Moller T. A fast triangle-triangle intersection test. Journal of Graphics Tools 1997;2:25-30.
Cited by
- Machined sharp edge restoration for triangle mesh workpiece models derived from grid-based machining simulation vol.15, pp.6, 2018, https://doi.org/10.1080/16864360.2018.1462571
- An Accurate Method for Determining Cutter-Workpiece Engagements in Five-Axis Milling With a General Tool Considering Cutter Runout vol.140, pp.2, 2018, https://doi.org/10.1115/1.4036783
- Tracing sub-surface swept profiles of tapered toroidal end mills between level cuts vol.6, pp.4, 2016, https://doi.org/10.1016/j.jcde.2019.04.003
- A Prediction Model of Cutting Force about Ball End Milling for Sculptured Surface vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/1389718
- Optimizing the numerical algorithm in Fast Constant Engagement Offsetting Method for generating 2.5D milling tool paths vol.108, pp.7, 2020, https://doi.org/10.1007/s00170-020-05452-1