• 제목/요약/키워드: multiple target tracking

검색결과 217건 처리시간 0.024초

Visual Object Tracking Fusing CNN and Color Histogram based Tracker and Depth Estimation for Automatic Immersive Audio Mixing

  • Park, Sung-Jun;Islam, Md. Mahbubul;Baek, Joong-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권3호
    • /
    • pp.1121-1141
    • /
    • 2020
  • We propose a robust visual object tracking algorithm fusing a convolutional neural network tracker trained offline from a large number of video repositories and a color histogram based tracker to track objects for mixing immersive audio. Our algorithm addresses the problem of occlusion and large movements of the CNN based GOTURN generic object tracker. The key idea is the offline training of a binary classifier with the color histogram similarity values estimated via both trackers used in this method to opt appropriate tracker for target tracking and update both trackers with the predicted bounding box position of the target to continue tracking. Furthermore, a histogram similarity constraint is applied before updating the trackers to maximize the tracking accuracy. Finally, we compute the depth(z) of the target object by one of the prominent unsupervised monocular depth estimation algorithms to ensure the necessary 3D position of the tracked object to mix the immersive audio into that object. Our proposed algorithm demonstrates about 2% improved accuracy over the outperforming GOTURN algorithm in the existing VOT2014 tracking benchmark. Additionally, our tracker also works well to track multiple objects utilizing the concept of single object tracker but no demonstrations on any MOT benchmark.

순차적 칼만 필터를 적용한 다중센서 위치추정 알고리즘 실험적 검증 (Experimental Verification of Multi-Sensor Geolocation Algorithm using Sequential Kalman Filter)

  • 이성민;김영주;방효충
    • 제어로봇시스템학회논문지
    • /
    • 제21권1호
    • /
    • pp.7-13
    • /
    • 2015
  • Unmanned air vehicles (UAVs) are getting popular not only as a private usage for the aerial photograph but military usage for the surveillance, reconnaissance and supply missions. For an UAV to successfully achieve these kind of missions, geolocation (localization) must be implied to track an interested target or fly by reference. In this research, we adopted multi-sensor fusion (MSF) algorithm to increase the accuracy of the geolocation and verified the algorithm using two multicopter UAVs. One UAV is equipped with an optical camera, and another UAV is equipped with an optical camera and a laser range finder. Throughout the experiment, we have obtained measurements about a fixed ground target and estimated the target position by a series of coordinate transformations and sequential Kalman filter. The result showed that the MSF has better performance in estimating target location than the case of using single sensor. Moreover, the experimental result implied that multi-sensor geolocation algorithm is able to have further improvements in localization accuracy and feasibility of other complicated applications such as moving target tracking and multiple target tracking.

Real-time Multiple Pedestrians Tracking for Embedded Smart Visual Systems

  • Nguyen, Van Ngoc Nghia;Nguyen, Thanh Binh;Chung, Sun-Tae
    • 한국멀티미디어학회논문지
    • /
    • 제22권2호
    • /
    • pp.167-177
    • /
    • 2019
  • Even though so much progresses have been achieved in Multiple Object Tracking (MOT), most of reported MOT methods are not still satisfactory for commercial embedded products like Pan-Tilt-Zoom (PTZ) camera. In this paper, we propose a real-time multiple pedestrians tracking method for embedded environments. First, we design a new light weight convolutional neural network(CNN)-based pedestrian detector, which is constructed to detect even small size pedestrians, as well. For further saving of processing time, the designed detector is applied for every other frame, and Kalman filter is employed to predict pedestrians' positions in frames where the designed CNN-based detector is not applied. The pose orientation information is incorporated to enhance object association for tracking pedestrians without further computational cost. Through experiments on Nvidia's embedded computing board, Jetson TX2, it is verified that the designed pedestrian detector detects even small size pedestrians fast and well, compared to many state-of-the-art detectors, and that the proposed tracking method can track pedestrians in real-time and show accuracy performance comparably to performances of many state-of-the-art tracking methods, which do not target for operation in embedded systems.

임의형상 배열센서에 적용 가능한 다중표적 방위각 추적 알고리즘 (Multiple Target DOA Tracking Algorithm Applicable to Arbitrarily Shaped Array)

  • 류창수
    • 대한전자공학회논문지TE
    • /
    • 제42권2호
    • /
    • pp.1-6
    • /
    • 2005
  • Ryu 등은 선형 선배열센서를 이용하여 표적의 방위각 궤적을 추적하는 알고리즘을 제안하였다. Ryu 등이 제안한 방위각 추적 알고리즘은 선형 선배열센서의 출력신호를 이용하여 신호부공간을 추정하고, 추정된 신호공간으로부터 각 표적의 방위각 이노베이션을 구하며, 이렇게 구한 방위각 이노베이션을 각 표적에 할당된 칼만필터의 입력으로 사용함으로써 표적의 방위각 궤적을 추적한다. 이러한 구조를 가지는 Ryu의 방위각 추적 알고리즘은 별도의 데이터연관 필터가 필요 없으며 효율적이라는 장점을 가지고 있다. 그러나 Ryu의 방위각 추적 알고리즘은 선형 선배열센서를 사용하는 환경에서 제안되었기 때문에 임의형상 배열센서에 적용하기에는 부적합하다. 배열센서를 사용하는 여러 응용분야에서 배열센서를 구성하는 센서들은 실제로 위치오차를 가지며, 배열센서는 임의형상 배열센서가 된다. 본 논문에서는 Ryu 알고리즘의 장점과 추적 성능을 그대로 유지하면서 임의형상 배열센서에 적용할 수 있는 방위각 추적 알고리즘을 제안한다.

다수의 물체가 이동하는 환경에서 선택된 물체의 추적기법 (Tracking a Selected Target among Multiple Moving Objects)

  • 김준석;송필재;차형태;홍민철;한헌수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.363-363
    • /
    • 2000
  • The conventional algorithms which identify and follow a moving target using a camera located at a fixed position are not appropriate for applying to the cases o( using mobile robots, due to their long processing time. This paper proposes a new tracking algorithm based on the sensing system which uses a line light with a single camera. The algorithm categirizes the motion patterns of a pair of mobile objects into parallel, branching, and merging motion, to decide of which objects the trajectories should be calculated to follow the reference object. Kalman Filter is used to estimate the trajectories of selected objects. The proposed algorithm has shown in the experiments that the mobile robot does not miss the target in most cases.

  • PDF

광대역 기동표적 대응 IMM 필터뱅크 (IMM Filterbank for Wideband-maneuvering Target Tracking)

  • 이정철;유창호;최재원
    • 제어로봇시스템학회논문지
    • /
    • 제20권8호
    • /
    • pp.882-889
    • /
    • 2014
  • This paper deals with a filterbank based on the IMM (Interacting Multiple Model) that combines data from a sensor and uses them selectively depending on a level of maneuver. Furthermore, within the maneuver interval, the existing IMM filter has disadvantages such as unnecessary target estimation errors caused by using a constant velocity model and an increase of computation load because of a fixed structure. On the other hand, the proposed IMM filterbank overcomes these disadvantages by using three model groups and designs a filterbank to cope with a wideband-maneuvering target. The performances of the IMM filterbank was evaluated through comparison with the existing IMM via computer simulations. The results show good performances for a wideband-maneuvering target.

지능형 추적 알고리즘 (Intelligent Tracking Algorithm for Maneuvering Target)

  • 노선영;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.499-501
    • /
    • 2005
  • When the target maneuver occurs, the estimate of the standard Kalman filter is biased and its performance may be seriously degraded. To solve this problem, this paper proposes a new intelligent estimation algorithm for a maneuvering target. This algorithm is to estimate the unknown target maneuver by a fuzzy system using the relation between the filter residual and its variation. The detected acceleration input is regarded as an additive process noise. To optimize the employed fuzzy system, the genetic algorithm (GA) is utilized. And then, the modified filter is corrected by the new update equation method using the fuzzy system. The tracking performance of the proposed method is compared with those of an interacting multiple model (IMM).

  • PDF

기동표적의 상태추정을 이용한 포의 사격통제 시스템 향상 연구 (Gun fire Control System Design with Maneuvering Target State Estimates)

  • 이동관;송택렬;한두희
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권3호
    • /
    • pp.98-109
    • /
    • 2006
  • Fire control system(FCS) errors can be classified as hardware errors, filter prediction errors, effective ballistic function errors, and aiming errors. Among these errors, the filter prediction errors are the most significant error sources. To reduce them, a target future position calculation method using the acceleration estimate is suggested and it is compared with the constant velocity target prediction method. Simulation results show that the suggested method has better performance than the constant velocity prediction method. Target tracking algorithm is established with multiple target tracking filters based on IMM structure.

Memory Propagation-based Target-aware Segmentation Tracker with Adaptive Mask-attention Decision Network

  • Huanlong Zhang;Weiqiang Fu;Bin Zhou;Keyan Zhou;Xiangbo Yang;Shanfeng Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권9호
    • /
    • pp.2605-2625
    • /
    • 2024
  • Siamese-based segmentation and tracking algorithms improve accuracy and stability for video object segmentation and tracking tasks simultaneously. Although effective, variability in target appearance and background clutter can still affect segmentation accuracy and further influence the performance of tracking. In this paper, we present a memory propagation-based target-aware and mask-attention decision network for robust object segmentation and tracking. Firstly, a mask propagation-based attention module (MPAM) is constructed to explore the inherent correlation among image frames, which can mine mask information of the historical frames. By retrieving a memory bank (MB) that stores features and binary masks of historical frames, target attention maps are generated to highlight the target region on backbone features, thus suppressing the adverse effects of background clutter. Secondly, an attention refinement pathway (ARP) is designed to further refine the segmentation profile in the process of mask generation. A lightweight attention mechanism is introduced to calculate the weight of low-level features, paying more attention to low-level features sensitive to edge detail so as to obtain segmentation results. Finally, a mask fusion mechanism (MFM) is proposed to enhance the accuracy of the mask. By utilizing a mask quality assessment decision network, the corresponding quality scores of the "initial mask" and the "previous mask" can be obtained adaptively, thus achieving the assignment of weights and the fusion of masks. Therefore, the final mask enjoys higher accuracy and stability. Experimental results on multiple benchmarks demonstrate that our algorithm performs outstanding performance in a variety of challenging tracking tasks.

순차 검증과 자료융합을 이용한 수중 표적 판별 (Underwater Target Discrimination using Sequential Testings and Data Fusion)

  • 곽은주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.657-659
    • /
    • 1998
  • In this paper we discuss an algorithm to discriminate a target under track against multiple acoustic counter-measure (ACM) sources, based on sequential testings of multiple hypotheses. The ACM sources are separated from the target under track and generate, while drifting, measurements with false range and Doppler information. The purpose of the ACM is to mislead the target tracking and to help the true target evade a pursuer. The proposed algorithm uses as a test statistic a function of both the sequences of processed waveform signature and the innovation sequences from extended Kalman filters to estimate the target dynamics and the drifting positions of the ACM sources. Numerical experiments on various scenarios show that the proposed algorithm discriminates the target faster with a higher probability of success than the algorithm using only the innovation sequences from extended Kalman filters.

  • PDF