• 제목/요약/키워드: multifunctional properties

검색결과 160건 처리시간 0.028초

용융침투법으로 제조한 유리-알루미나 복합체: Ⅰ. 알루미나 입도 효과 (Glass-alumina Composites Prepared by Melt-infiltration: Ⅰ. Effect of Alumina Particle Size)

  • 이득용;장주웅;김대준;박일석;이준강;이명현;김배연
    • 한국세라믹학회지
    • /
    • 제38권9호
    • /
    • pp.799-805
    • /
    • 2001
  • 상용 알루미나 분말(0.5${\mu}$m, 3${\mu}$m)을 die-press법을 이용하여 1120$^{\circ}$C에서 2시간 1차 소결하여 다공성 전성형체를 제조하고 1100$^{\circ}$C에서 4시간 $La_2O_3-Al_2O_3-SiO_2$계 유리를 용융 침투시켜 치밀한 유리-알루미나 복합체를 제조하였다. 알루미나 입도가 유리-알루미나 복합체의 충진율, 미세조직, 젖음성, 기공률 및 크기, 기계적 특성에 미치는 영향을 조사하였다. 입도 범위가 0.1∼48${\mu}$m로 넓고 bimodal size 입도 분포를 가지면서 random orientation을 가진 3${\mu}$m 알루미나가 분산된 복합체가 최적의 기계적 특성 및 충진률이 관찰되었으며 강도와 인성값은 각각 519MPa, $4.5MPa{\cdot}m^{1/2}$이었다.

  • PDF

Microstructure and Electrical Properties of Poly-N-isopropylacrylamide- N-vinylcarbazole Copolymers

  • Pierson, R.;Basavaraja, C.;Kim, Na-Ri;Jo, Eun-Ae;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권9호
    • /
    • pp.2057-2060
    • /
    • 2009
  • Conducting poly-N-isopropylacrylamide-N-vinyl carbazole (PNI-nvc) copolymers were synthesized via in situ deposition technique by dissolving different weight percentages of N-vinyl carbazole (10, 20, 30, and 40%). The structural morphology and FT-IR studies support the interaction between PNI and N-vinyl carbazole. The temperaturedependent DC conductivity of PNI-nvc was studied within the range of 300 ${\leq}\;T\;{\leq}$ 500 K, presenting evidence for the transport properties of PNI-nvc. The DC conductivity of PNI-nvc copolymers signifies the future development of new nanocopolymers that acts as a multifunctional material.

키토산과 콜라겐의 혼합물로 처리한 폴리에스테르 직물의 항균성 및 물성 (Antimicrobial Activity and Physical Properties of Polyester Fabric Treated with Mixture of Chitosan and Collagen)

  • 박수미;오수민;송화순
    • 한국염색가공학회지
    • /
    • 제11권4호
    • /
    • pp.31-38
    • /
    • 1999
  • The purpose of this study is to develop multifunctional fabric that has improved antimicrobial activity and reduction rate of gas by treatment of mixture of chito colla and crosslinking material for polyester. The surface morphology of treated PET fabric was studied by scanning electron microscopy(SEM). The properties of the PET fabric, such as antimicrobial activity, whiteness, moisture regain, water absorption and static voltage, and handle were investigated. Antimicrobial activity of treated PET fabric was proved 99%. The surface of treated PET fabric showed harshness and irregularity. The whiteness of treated PET fabric on the baking condition was decreased as time and temperature was increased. The moisure regain of treated PET fabric equally was maintained. Water absorption and static voltage of treated PET fabric were improved. KOSHI of treated PET fabric was increased compared with the untreated PET fabric H/W of treated PET fabric was improved compared with the untreated PET fabric and 2HB/B of treated PET fabric were reduced.

  • PDF

Synthesis and Mechanical Properties of Nano Laminating $Cr_2AlC$ using $CrC_x/Al$ Powder Mixtures

  • Han, Jae-Ho;Park, Sang-Whan;Kim, Young-Do
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.868-869
    • /
    • 2006
  • [ $Cr_2AlC$ ] was synthesized by a reactive hot pressing of $CrC_x(x=0.5)$ and Al powder mixture used as starting materials at the temperature range of $1200^{\circ}C{\sim}1400^{\circ}C$ under 25 MPa in Ar atmosphere. Fully dense $Cr_2AlC$ with high purity was synthesized by hot pressing $CrC_x$ and Al powder mixture at the temperature as low as $1200^{\circ}C$. The average grain size of synthesized bulk $Cr_2AlC$ was varied in the range of $10-100{\mu}m$ depending on hot pressing temperatures. The maximum flexural strength of synthesized bulk $Cr_2AlC$ exceeded 600 MPa.

  • PDF

Reaction Synthesis and Mechanical Properties of $B_4C$-based Ceramic Composites

  • Han, Jae-Ho;Park, Sang-Whan;Kim, Young-Do
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1080-1081
    • /
    • 2006
  • In this investigation, $B_4C$ based ceramic composites were fabricated by in-situ reaction hot pressing using $B_4C$, TiC SiC powder as starting materials. The reaction synthesized composites by hot pressing at $1950^{\circ}C$ was found to posses very high relative density. The reaction synthesized $B_4C$ composites comprise $B_4C$, $TiB_2$, SiC and graphite by the reaction between TiC and $B_4C$. The newly formed $TiB_2$ and graphite was embedded both inside grain and at grain boundary $B_4C$. The mechanical properties of reaction synthesized $B_4C-TiB_2-SiC$-graphite composites were more enhanced compared to those of monolithic $B_4C$.

  • PDF

탄소나노튜브 복합체의 기술동향 (Technical Status of Carbon Nanotubes Composites)

  • 이종일;정희태
    • Korean Chemical Engineering Research
    • /
    • 제46권1호
    • /
    • pp.7-14
    • /
    • 2008
  • 탄소나노튜브는 전기적, 기계적, 열적 특성면에서 모두 탁월한 물성을 나타냄에 따라 복합체 분야에서 가장 이상적인 나노충전재료로 여겨지고 있다. 그에 따라 탄소나노튜브 복합체는 전도성재료, 고강도 경량 특성의 구조재료, 다기능 복합재료 등의 응용에 있어서 그 활용도가 높아지고 있다. 본 총설에서는 탄소나노튜브의 제조방법, 개질, 탄소나노튜브 복합체의 다양한 특성 및 응용 분야에 대한 최근 연구 동향을 설명하고 탄소나노튜브 복합체 상업화에 있어서 앞으로 나아갈 방향에 대하여 다룬다.

The Emerging Role of Eosinophils as Multifunctional Leukocytes in Health and Disease

  • Hyung Jin Kim;YunJae Jung
    • IMMUNE NETWORK
    • /
    • 제20권3호
    • /
    • pp.24.1-24.14
    • /
    • 2020
  • Eosinophils are terminally differentiated cytotoxic effector cells that have a role in parasitic infections and allergy by releasing their granule-derived cytotoxic proteins. However, an increasing number of recent observations indicate that eosinophils are not only associated with the pathogenesis of a wide range of diseases, but also contribute to the maintenance of homeostatic responses in previously underappreciated diverse tissues, such as the gastrointestinal (GI) tract and adipose tissue. In this review, we describe biological characteristics of eosinophils, as their developmental properties, permissive proliferation and survival, degranulation activity, and migration properties enable them to distribute to both homeostatic and inflamed tissues. We describe pathologic aspects of eosinophils with a role in asthma and in various GI diseases, including eosinophilic GI disorders, inflammatory bowel disease, and radiation-induced enteropathy. Finally, we discuss the beneficial role of eosinophils, which contribute to the resolution of pathogenic conditions and to the modulation of homeostatic biologic responses.

Enhancing Mechanical and Electrical Performance through Polymer Blending: A Study on PVA-PDDA Blended Films for Triboelectric Energy Harvesting

  • Nebiyou Tadesse Debele;Alemtsehay Tesfay Reda;Yong Tae Park
    • Composites Research
    • /
    • 제37권2호
    • /
    • pp.139-142
    • /
    • 2024
  • This study explores the impact of polymer blending on the mechanical properties and triboelectric energy harvesting capability of composite polymers. A multifunctional free-standing polymer blend composed of poly(vinyl alcohol) (PVA) and poly(diallyldimethylammonium chloride) (PDDA) was fabricated using a polymer casting method. Stress-strain analysis of the polymer blend revealed an enhanced stretchability of 308.4% with excellent transparency. Furthermore, triboelectric analysis revealed dynamic energy harvesting capabilities with impressive electrical voltage and current output of 50 V and 5 μA. These results represent a significant improvement compared to individual PVA and PDDA polymers and highlight the potential of polymer blending to enhance both mechanical and electrical properties for energy harvesting applications.

전기저항 측정 방법을 이용한 표면 처리된 탄소 나노튜브와 나노 섬유 강화된 에폭시 복합재료의 비파괴적 감지능 평가 (Nondestructive Sensing Evaluation of Thermal Treated Carbon Nanotube and Nanofiber/Epoxy Composites Using Electrical Resistance Measurement)

  • 정진규;박종만;김대식;김태욱
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.15-18
    • /
    • 2004
  • Nondestructive damage sensing and mechanical properties for thermal treated carbon nanotube(CNT) and nanofiber(CNF)/epoxy composites were investigated using electro-micromechanical technique. Carbon black (CB) was used only for the comparison. Electro-micromechanical techniques were applied to obtain the fiber damage and stress transferring effect of carbon nanocomposites with their contents. Thermal treatment and temperature affected on apparent modulus and electrical properties on nanocomposites due to enhanced inherent properties of each CNMs. Coefficient of variation (COV) of volumetric electrical resistance can be used to obtain the dispersion degree indirectly for various CNMs. Dispersion and surface modification are very important parameters to obtain improved mechanical and electrical properties of CNMs for multifunctional applications. Further optimized functionalization and dispersion conditions will be investigated for the following work continuously.

  • PDF

리그닌/PVA 나노섬유 웹의 수분 특성 및 생분해성 평가 (Water Absorption Properties and Biodegradability of Lignin/PVA Nanofibrous Webs)

  • 송유정;이은실;이승신
    • 한국의류학회지
    • /
    • 제41권3호
    • /
    • pp.517-526
    • /
    • 2017
  • The biodegradation and water absorption properties of lignin/poly(vinyl alcohol) (PVA) nanofibrous webs are investigated. Lignin/PVA nanofibrous webs containing 0, 50, and 85wt% of lignin were prepared via an electrospinning process to observe the effect of the lignin concentration on the biodegradability and water absorption properties of lignin/PVA nanofibrous webs. The morphology of the materials was examined by field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). To understand the wetting behavior and hydrophilic nature of the electrospun lignin/PVA nanofibrous webs, the water absorbency, contact angle, and water uptake were examined. The enzymatic degradation of lignin/PVA nanofibrous webs was investigated using laccase by measuring total organic carbon (TOC) concentration over a course of 50 days. Water drops were absorbed immediately into all of the specimens. The water uptake of lignin/PVA nanofibrous webs increased as the amount of PVA in the lignin/PVA hybrid webs increased. The enzymatic degradation experiment indicated that the inherent biodegradability of lignin was retained after its transformation into nanofibers. Our findings imply that blending these two types of polymers is promising because it can lead to the development of a new range of multifunctional materials such as antimicrobial absorbent nanotextiles based on sustainable biopolymers.