• Title/Summary/Keyword: multidisciplinary design

검색결과 268건 처리시간 0.027초

인공신경망 이론을 적용한 3단 축류압축기의 다분야 통합 최적설계 (Multidisciplinary Design Optimization of 3-Stage Axial Compressorusing Artificial Neural Net)

  • 홍상원;이세일;강형민;이동호;강영석;양수석
    • 한국유체기계학회 논문집
    • /
    • 제13권6호
    • /
    • pp.19-24
    • /
    • 2010
  • The demands for small, high performance and high loaded aircraft compressor are increased in the world. But the design requirements become increasingly complex to design these high technical engines, the requirement of the design optimization become increased. The optimal design result of several disciplines show different tendencies and nonlinear characteristics of the compressor design, the multidisciplinary design optimization method must be considered in compressor design. Therefore, the artificial Neural Net method is adapted to make the approximation model of 3-stage axial compressor design optimization for considering the nonlinear characteristic. At last, the optimal result of this study is compared to that of previous study.

분야간 연성된 설계변수의 처리를 통한 다분야통합최적설계 방법 (A Method of Multidisciplinary Design Optimization via Coordination of Interdisciplinary Design Variables)

  • 정희석;이형주;이종수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.380-385
    • /
    • 2001
  • The paper presents a new multidisciplinary design optimization architecture using optimal sensitivity and coordination of interdisciplinary design variables. Original design problem is decomposed into a number of sub-problems that represent individual engineering analysis. The coupled effects between sub-problems are computed by interdisciplinary design variables. System level coordination is determined by optimal parameter sensitivity calculated by finite difference method. The proposed. MDO strategy is applied to a simplified model of rotorcraft blade design associated with structures and aerodynamic disciplines.

  • PDF

Role of Artificial Neural Networks in Multidisciplinary Optimization and Axiomatic Design

  • Lee, Jong-Soo
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.695-700
    • /
    • 2008
  • Artificial neural network (ANN) has been extensively used in areas of nonlinear system modeling, analysis and design applications. Basically, ANN has its distinct capabilities of implementing system identification and/or function approximation using a number of input/output patterns that can be obtained via numerical and/or experimental manners. The paper describes a role of ANN, especially a back-propagation neural network (BPN) in the context of engineering analysis, design and optimization. Fundamental mechanism of BPN is briefly summarized in terms of training procedure and function approximation. The BPN based causality analysis (CA) is further discussed to realize the problem decomposition in the context of multidisciplinary design optimization. Such CA is also applied to quantitatively evaluate the uncoupled or decoupled design matrix in the context of axiomatic design with the independence axiom.

  • PDF

다목적 유전알고리듬을 이용한 시스템 분해 기법 (A System Decomposition Technique Using A Multi-Objective Genetic Algorithm)

  • 박형욱;김민수;최동훈
    • 대한기계학회논문집A
    • /
    • 제27권4호
    • /
    • pp.499-506
    • /
    • 2003
  • The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to determine the best order of the processes within these subcycles to reduce design cycle time and cost. This is accomplished by decomposing large multidisciplinary problems into several sub design structure matrices (DSMs) and processing them in parallel This paper proposes a new method for parallel decomposition of multidisciplinary problems to improve design efficiency by using the multi-objective genetic algorithm and two sample test cases are presented to show the effect of the suggested decomposition method.

다분야통합최적설계 방법론의 병렬처리 성능 분석 (Performances of Multidisciplinary Design Optimization Methodologies in Parallel Computing Environment)

  • 안문열;이세정
    • 대한기계학회논문집A
    • /
    • 제31권12호
    • /
    • pp.1150-1156
    • /
    • 2007
  • Multidisciplinary design optimization methodologies play an essential role in modern engineering design which involves many inter-related disciplines. These methodologies usually require very long computing time and design tasks are hard to finish within a specified design cycle time. Parallel processing can be effectively utilized to reduce the computing time. The research on the parallel computing performance of MDO methodologies has been just begun and developing. This study investigates performances of MDF, IDF, SAND and CO among MDO methodologies in view of parallel computing. Finally, the best out of four methodologies is suggested for parallel processing purpose.

비행체 공력-구조-RF 스텔스 통합해석 시스템에 관한 연구 (An Integrated System for Aerodynamic, Structural, and RF Stealth Analysis of Flying Vehicles)

  • 박민주;이동호;명노신;조태환
    • 한국항공우주학회지
    • /
    • 제36권1호
    • /
    • pp.86-91
    • /
    • 2008
  • 최근 항공기 예비설계 단계에서 여러 분야의 설계요소를 동시에 고려하는 다분야 통합설계(Multidisciplinary Design) 기법이 요구되고 있다. 본 연구에서는 CATIA를 기반으로 항공기 형상에 대한 공력, 구조, RF 스텔스의 성능 분석을 위한 통합시스템을 구축하였다. CATIA를 이용하여 공력, 구조, RF 스텔스 해석을 위한 동일 사각격자를 생성한 후 생성된 격자를 이용하여 공력특성과 구조변위를 계산하였다. 레이더 포착면적 (RCS) 계산은 사각격자로부터 삼각형 격자를 추가로 생성하여 수행하였다. 이 과정 중 각 해석분야의 입력 파일을 생성할 수 있는 변환코드를 개발하였다. 세부분야 해석기법으로 패널 코드 PANAIR, 전산구조해석 코드 NASTRAN, PO 기법에 기초한 RCS 해석코드를 사용하였다.

구동계를 고려한 엔진 마운트의 다분야 통합 최적설계 (Multidisciplinary Design Optimization of Engine Mount with Considering Driveline)

  • 서명원;심문보;김문성;홍석길
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.209-217
    • /
    • 2002
  • This gaper discusses a multidisciplinary design optimization of the engine mounting system to improve the ride quality of a vehicle and to remove the possibility of the resonance between the powertrain system and vehicle systems. The driveline model attempts to support engine mount development by providing sufficient detail for design modification assessment in a modeling environment. Design variables used in this study are the locations, the angles and the stiffness of an engine mount system. The goal of the optimization is both decoupling the roll mode ova powertrain and minimizing the vibration transmitted to the vehicle including the powertrain, simultaneously. By applying forced vibration analysis for vehicle systems and mode decouple analysis for the engine mount system, it is shown that improved optimization result is obtained.

유연 날개의 확률기반 최적 설계 (Reliability Based Design Optimization of the Flexible Wing)

  • 이재훈;김수환;권장혁
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.187-190
    • /
    • 2005
  • In this study, the reliablility based design optimization is peformed for an aircraft wing. The flexiblility of the wing was assumed by considering the interaction modeled by static aeroelasticity between aerodynamic forces and the structure. For a multidisciplinary design optimization the results of aerodynamic analysis and structural analysis were included in the optimization formulation. The First Order Reliability Method(FORM) was employed to consider the uncertainty of the designed points.

  • PDF

다분야통합최적설계를 위한 데이터 서버 중심의 컴퓨팅 기반구조 (Data Server Oriented Computing Infrastructure for Process Integration and Multidisciplinary Design Optimization)

  • 홍은지;이세정;이재호;김승민
    • 한국CDE학회논문집
    • /
    • 제8권4호
    • /
    • pp.231-242
    • /
    • 2003
  • Multidisciplinary Design Optimization (MDO) is an optimization technique considering simultaneously multiple disciplines such as dynamics, mechanics, structural analysis, thermal and fluid analysis and electromagnetic analysis. A software system enabling multidisciplinary design optimization is called MDO framework. An MDO framework provides an integrated and automated design environment that increases product quality and reliability, and decreases design cycle time and cost. The MDO framework also works as a common collaborative workspace for design experts on multiple disciplines. In this paper, we present the architecture for an MDO framework along with the requirement analysis for the framework. The requirement analysis has been performed through interviews of design experts in industry and thus we claim that it reflects the real needs in industry. The requirements include integrated design environment, friendly user interface, highly extensible open architecture, distributed design environment, application program interface, and efficient data management to handle massive design data. The resultant MDO framework is datasever-oriented and designed around a centralized data server for extensible and effective data exchange in a distributed design environment among multiple design tools and software.

다분야통합 해석을 이용한 순항미사일 형상 최적설계 (Cruise Missile Configuration Optimal Design Using Multidisciplinary Analysis)

  • 최석민;이승진;이재우;변영환
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.38-42
    • /
    • 2007
  • 본 연구에서는, 다분야 통합 해석을 이용한 순항미사일 형상 최적설계를 수행하였다. FORTRAN을 이용하여 개발한 공력, 중량, 성능 및 임무 해석 모듈을 프레임워크를 통하여 통합하였으며 최적화를 위하여 전역최적화 도구인 다윈 알고리즘을 사용하였다. 최적설계 결과, 다른 설계 구속조건을 만족시키면서 17% 가량 전체 무게를 줄일 수 있었다.

  • PDF