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Abstract 

Artificial neural network (ANN) has been extensively used in areas of nonlinear system modeling, 
analysis and design applications. Basically, ANN has its distinct capabilities of implementing system 
identification and/or function approximation using a number of input/output patterns that can be obtained via 
numerical and/or experimental manners. The paper describes a role of ANN, especially a back-propagation 
neural network (BPN) in the context of engineering analysis, design and optimization. Fundamental 
mechanism of BPN is briefly summarized in terms of training procedure and function approximation. The 
BPN based causality analysis (CA) is further discussed to realize the problem decomposition in the context of 
multidisciplinary design optimization. Such CA is also applied to quantitatively evaluate the uncoupled or 
decoupled design matrix in the context of axiomatic design with the independence axiom. 

1. Introduction 
An artificial neural network (ANN) can be described 

as a massively parallel, interconnected network of 
computing elements. There are a number of distinctive 
features of neurobiological methods of computation 
which are different from traditional numerical computing 
and the more recently emergent strategies of symbolic 
processing and computation. There have been significant 
applications in adapting such computational model to 
various fields of engineering such as image processing, 
pattern recognition, fault detection and diagnostic 
systems. Basically, ANN has its distinct capabilities of 
implementing system identification and/or function 
approximation using a number of input/output patterns 
that can be obtained via numerical and/or experimental 
manners. The use of neural networks for function 
approximations and formulations has been successfully 
used in the context of engineering analysis and design 
optimization [1-3]. 

The paper discusses the back-propagation neural 
network (BPN) based causality analysis (CA) which can 

identify the quantitative relation between input design 
and output response values for a rational engineering 
design formulation. The causality analysis is first 
explored to represent the problem decomposition in the 
context of decomposition based multidisciplinary design 
optimization (MDO) [2,4,5]. There have been recent 
considerable advances in development of MDO in areas 
of aerospace and mechanical engineering. MDO has 
been shown to be an efficient tool for design and 
optimization in cases where the coupled interactions 
among participating engineering disciplines should be 
considered during the analysis and/or design in parallel. 
A general structure of MDO may contain the multi-
criterion and/or multi-objective design formulation, the 
problem decomposition of design domain, the sensitivity 
and approximation techniques, and the coordination and 
integration of locally optimized design solutions. 
Furthermore, the speed-up of information technology 
enables to produce practical MDO frameworks that could 
utilize the CAD/CAE interface and intelligent data base 
management and communication on different hardware 
and software systems under the distributed computing 
environment. The decomposition based design approach 
is one of the most efficient MDO methods, which 
decomposes the overall design system into a number of 
sub-problems/sub-systems/sub-spaces based on 
participating engineering disciplines or product 
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components. The decomposition based design is 
especially effective when the computing process is 
performed by parallel processing and distributed systems, 
thereby resulting in the decentralization of computing 
resource requirements. 

The present study describes how BPN based causality 
analysis can be utilized to evaluate dependencies among 
design variables and design objectives, and which can be 
used as a guideline for problem decomposition. 

In the design approach, the concept of independence 
axiom is implemented in the context of axiomatic design. 
Such rational design method has received the 
considerable attention in areas of product design and 
manufacturing. The design matrix in the independence 
axiom should be described by the uncoupled or 
decoupled relationship between functional requirements 
(FRs) and design parameters (DPs). The independence 
axiom has been applied to structural design optimization 
problems, wherein design variables are grouped 
according to analysis of variance (ANOVA) based 
sensitivity evaluations. In the present study, the 
sensitivity, that is, the design matrix between FRs and 
DPs are evaluated via back-propagation neural network 
(BPN) based causality analysis. After determining the 
uncoupled/decoupled relation between FRs and DPs 
based on independence axiom, the design solution can be 
logically obtained by examining design data. 
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ijwAs another aspect of BPN based CA, therefore, such 

problem decomposition technique is applied to the 
identification of the uncoupled or decoupled design 
matrix in the context of axiomatic design under the 
principle of the independence axiom [6,7]. 

 
2. Back-Propagation Neural Network 

BPN refers to a class of feed-forward networks 
containing at least one hidden layer of artificial neurons 
whose weights are set by a supervised learning. The 
network with two hidden layers is sufficient to represent 
any arbitrary functions of any number of continuous 
arguments; moreover, it can actually be shown that 
networks with even a single hidden layer of neurons are 
flexible enough to represent any continuous function. 
The effectiveness of multilayer feed-forward networks in 
such function approximation has played a role in the 
emergence of neural networks as a tool for solving 
engineering analysis and design problems. 

At the most basic level, BPN can be viewed as 
providing a mapping between input and output vectors of 
interest. There is an input layer of neurons which serves 
as a fan-out layer for the input signal, a number of 
hidden layers of neurons, and a layer of output neurons 
where the output vector is available. A number of forms 
of activation function have been proposed; an activation 
function for BPN should exhibit some important 

characteristics. It should be continuous, easily 
differentiable, and monotonically non-decreasing. The 
principal advantage of this function is its ability to 
handle both large and small magnitude f the input signal; 
large positive and negative values of the input signal 
yield the vanishingly small gain, while intermediate 
levels of the input signal generate the finite gain. 
However, the objective should be to have an appropriate 
level of gain for a wide range of input signals. All of 
input-output pairs of training patters are scaled within the 
finite range of 0.1 and 0.9, and these scaled values are 
then used to train the network. The training procedure is 
very similar to constructing a polynomial based response 
surface, where the sigmoid-type activation function 
provides a very rich nonlinear behavior for the surface 
manipulation without the need for having to specify the 
order of polynomials. 

The training algorithm of BPN involves three stages; 
the feed-forward of the input training pattern, the 
calculation associated with errors between the output 
predicted by the network and the actual output, and the 
adjustment of weights. During the first stage of the feed-
forward operation, each input neuron receives the input 
signal and relays this signal to all neurons in the hidden 
layer. In general, the strength of the interconnection 
between and i-th neuron of the k-th layer and the j-th 
neuron of the l-th layer is represented by the 
interconnection weight . For network architecture 

with a single hidden layer, the input to the i-th neuron 
can be written as follows: 
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where,  is the interconnection weight between 

the i-th neuron of the input layer and the j-th neuron of 
the hidden layer. This weighted sum of inputs is 
processed through an activation function 
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which is then sent to all neurons in the output layer. 
The network output Y  is then computed by an 
activation function after summing its weighted input 
signals through hidden layers. 
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 is the interconnection weight between the 

j-th neuron of the hidden layer and the k-th neuron of the 
output layer. During the second stage associated with the 
back-propagation of error, each output layer receives a 
target pattern T , which is corresponding to input 



training pattern, and then compute its weight correction 
term jkwΔ  in terms of its error information terms kδ  

as follows: 
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where, α  is a learning rate. Also the weight 
correction term between a hidden layer and the input 
layer is obtained from the following procedure: 
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In case of network architecture with multiple hidden 
layers, the training algorithm is processed within a loop 
of hidden layers. The process of updating weights is 
repeated until the network has a specified accuracy; the 
update equations in this process are given as follows: 

) ( ) ( )ij ijw t w t+ = + Δ    (10) 

) ( ) ( )jk jkw t w t+ = + Δ .  (11) 

During the training of BPN, the learning rate has 
been used to update interconnection weights. A 
convergence is sometimes faster if a momentum 
parameter is added to the update of weights. In order to 
implement the momentum, weights from one or more 
previous training patterns must be provided. Such 
momentum allows the network to generate large weight 
adjustments as long as the corrections are in the same 
general direction for several patterns, while using a 
smaller learning rate to prevent a large response to the 
error from any one training pattern. This also reduces the 
likelihood that the network will find weights which are a 
local, and not a global minimum. From another 
perspective, the momentum parameter helps the network 
proceed not in the direction of the gradient, but in the 
direction of a combination of the current gradient and the 
previous direction of the weight correction. Other 
variations in updating weights such as an adaptive 
learning rate of ‘delta-bar-delta’ and adaptive slopes of 
sigmoid function can be adopted in improve the network 
training performance in some environments. 

 
3. Causality Analysis 

Decomposition principles in multidisciplinary design 
require a rational approach to efficiently handle the 
large-scale problem in optimization. The present study 
discusses how BPN can be used to identify dependencies 
among design variables and design objectives, and which 
can be used as a guideline for problem decomposition. 
Consider the strengths of interconnections between 
neurons of the various layers of a well-trained BPN. For 

a network with a single hidden layer of neurons where 
the interconnection weights between the input layer and 
the hidden layer and between the hidden and output 
layers are denoted as  and jku , respectively. If the 

magnitude of interconnection weights is used to 
determine flow-paths of information, then the fraction of 
signal, jf , received at the j-th hidden layer neuron 

which can be attributed to the i-th input neuron is given 
as follows: 
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 is the sum of the magnitude of weights 

between all input layer neurons and the j-th neuron of the 
hidden layer. If the output signal is that a node k of the 
output layer, then the signal from the j-th hidden layer 
node is further multiplied by | jku  and a sum of all 

such signals through the different neurons J in the hidden 
layer can be written as follows: 
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If the sum of all η  taken over all input layer 
neurons is denoted by kΘ , then the fraction of an output 
weight which is attributable to the i-th input neuron can 
be expressed as the elements  of a transition matrix 
[T] as follows: 
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This can be further normalized in the following 
manner: 
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∑
The elements of this matrix show the contribution of 

the i-th input to the k-th output. It is noted that the above 
operation is equivalent to a matrix multiplication of 
normalized or partitioned interconnection weight 
matrices of successive layers, taken in order; the 
extension to multiple hidden layer network is 
straightforward. Inspection of a particular column of this 
matrix (e.g., the k-th column), the influence of each input 
component on the k-th output component can be 
qualitatively assessed. Since the sum of all elements in a 



column is unity, this influence is represented by a 
fractional quantity, and allows for easy identification of 
dominant input variables, and hence a topology for 
decomposing the design problem. This transition is 
referred to as the absolute causality analysis (ABS-CA) 
matrix. It is noted that a change in the transition matrix 
resulting from a change in size of the training set can be 
used to determine if an adequate number of training 
patterns has been considered. 

   
 

In the jargon of optimization methods, this matrix 
yields an aggregate sensitivity which is valid over a 
design range defined by the domain over which the 
neural network is trained. If the region is large, a number 
of networks can be developed, each trained one for a 
cluster of the design region with similar characteristics. 
An alternative approach for computing the aggregate 
sensitivity matrix has been developed; this approach 
simply considers the matrix product of the 
interconnection matrices without taking an absolute 
value of each weight coefficient. This approach, 
therefore, incorporates the effect of the sign of 
interconnection weights in the analysis, and is useful in 
identifying both the magnitude and direction of input-
output interactions. This matrix is referred to as the 
alternative causality analysis (ALT-CA) matrix. In this 
approach, the matrix product and normalization of the 
interconnection weight matrices are described as follows: 

1
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In the above,  is the n-th weight matrix, the 
coefficients  of which represents the interconnection 

weight between the i-th neuron of the k-th layer and the 
j-th neuron of the l-th layer; N denotes the total number 
of layers of neurons in the BPN architecture. This 
normalized matrix  incorporates the effect of sign of 

interconnection weight in the analysis. 
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4. Decomposition in MDO 

The neural network based causality analysis provides 
valuable information about the extent of coupling in the 
large-scale multidisciplinary system. In order to 
implement a decomposition based design strategy, the 
problem must be partitioned into a appropriate number of 
sub-problems depending upon available computing 
machines or parallel processors. Optimal partitioning 
schemes for system decomposition have been widely 
used in design and manufacturing applications for 
process and scheduling. A reasonable and logical 
approach for partitioning is one where balanced subsets 

of design variables would be assigned to different sub-
problems, and where each sub-problem would be 
responsible for meeting the system level design 
objectives and for satisfying constraints most critically 
affected by the design variables of the corresponding 
sub-problem. This approach is implemented in the 
context of interconnection weights of BPN based 
transition matrix (i.e., ABS-CA) as follows: 

For a transition matrix [ ]T  obtained from a trained 
BPN, partition this matrix into a total of K (where 
2<K<NCON, and NCON is the total number of 
constraints in the design problem) different groups 
denoted as ; each group contains design variables kG ix  
which have the strongest influence on constraints 
belonging to the group . To formalize the partitioning 
procedure, define a grouping identification matrix with 
element  such that 

kG

ijV

1ij i kV if x G= ∈

0ij i kV if x G= ∉

   (20) 

 

In the above, the subscript ‘j’ refers to the j-th 
constraint. To obtain an optimal partitioning, a 
performance index PI is determined as follows: 
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where, NDV is the number of design variables, Note 
that the element  are obtained as a scalar product, 

and have a value of either zero or the absolute value of 
the coefficient ij iz

ijB

T  of the transition matrix;  is the 

number of non-zero value in the i-th row of the matrix 
. The mathematical statement of optimal problem 

partitioning can be now formulated as follows: 
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δ  is a Kronecker delta, where, 
kxN

kG
( )

k

 is the number 

of design variables to be assigned to a group , and 

j GN g

kG

 is the number of output responses (i.e., 

constraint functions) in a group . The objective 
function has two components – the first term leads to a 
maximization of the performance index PI while the 
second term ensures a minimal difference between the 
numbers of design variables in each group. The 
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constraint condition in the above optimal partitioning 
problem is necessary to limit the number of design 
constraints denoted as  is used. In this 

optimal partitioning scheme, the design variables are the 
allocation of elements of the grouping identification 
matrix . This is an integer programming problem 

which can be conventionally solved using genetic 
algorithm or evolutionary strategies. 
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5. Design Matrix in Independence Axiom 

The paper presents a logical design process for the 
application of the axiomatic design, an efficient method 
useful in developing new products. The axiomatic design 
with independence axiom indicates that the 
independence should be maintained between functional 
requirements (FRs) and design parameters (DPs) in an 
uncoupled or decoupled manner. The design matrix [A] 
explains the relation between FRs and DPs as follows: 

[ ]{ sDPFR A    (25) 
If the design matrix by the analysis of independence 

axiom comes up with a diagonal matrix, it is called an 
uncoupled design, which is an ideal design matrix as 
follows: 

1 X O
O

= ⎢   (26) 

where, ‘X’ represents connection between FR and DP 
while ‘O’ means there is no relation. If the design matrix 
is a triangular matrix, it is called a decoupled design as 
follows: 

1 X O
X

= ⎢   (27) 

Other matrixes are coupled designs. In case of 
coupled designs, there exists a feedback in the 
relationship of FRs and DPs. Therefore, the coupled 
designs should be avoided in the paradigm of the 
axiomatic design. In other words, the uncoupled design, 
which is an ideal design method in maintaining 
independent relationship between FRs and DPs, is the 
best way in approaching problems. However, pursuing 
such an ideal design has its limitations in reality so that a 
decoupled design method, through which the design 
factors of coupled problems are determined one by one, 
is suggested. The present study takes logical approaches 
according to decoupled design methods. 

X X O
[A

X X X X
⎡ ⎤

= ⎢ ⎥
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 (28) 

The first step during the design matrix is to select the 
design parameters which affect functional requirements 
in a uncoupled or decoupled manner in the context of 
axiomatic design with independence axiom. The 

sensitivity, that is, the design matrix between FRs and 
DPs would be evaluated via both analysis of means 
(ANOM) and BPN based causality analysis. 

After determining the uncoupled/decoupled relation 
between FRs and DPs based on independence axiom, the 
design solution is locally obtained by looking at design 
data. Upon such uncoupled/decoupled design matrix 
between design parameters and functional requirements, 
the formal optimization process would be conducted. 

 
6. Closing Remarks 

The paper describes the benefit of BPN based 
causality analysis in the context of multidisciplinary 
design optimization and axiomatic design. In engineering 
design problems, the problem decomposition is to 
multidisciplinary design optimization and the uncoupled 
or decoupled design matrix is to the axiomatic design. 
The causality analysis directs how the design problem is 
effectively decomposed into a number of sub-problems 
which are strongly related between input variables and 
output responses. 
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