• Title/Summary/Keyword: multi-storied building

Search Result 11, Processing Time 0.024 seconds

A Study on the Architectural Evolution of Multi-storied Buildings in Hanyang, the Capital of Josun Dynasty (조선시대 도성(都城) 중층건물의 건축형식 전개(展開)에 관한 연구)

  • Ryoo, Seong-Lyong
    • Journal of architectural history
    • /
    • v.24 no.3
    • /
    • pp.17-29
    • /
    • 2015
  • This study is about the change of multi-storied buildings in Hanyang, the capital city of Joseon Dynasty. The changes are divided into 3 phases in the viewpoint of architectural types and building types. The first phase is from the early Joseon Dynasty to the time of Japanese invasion to Korea and Sungryemun remains until now. The second phase is from 1592 to the the first half of the 18th century. Many multi-storied Buddhist halls were rebuilt at that time. In the final phase, many multi-storied gate buildings and multi-storied main buildings of palaces were rebuilt. And there are differences between the Buddhist buildings and the main buildings of palaces. By the way the change that architectural style of the Buddhist buildings and the main buildings of pal were switched and mixed occurred. For example, Anguksa Daeungjeon adopted the style of multi-storied gates and Injeongjeon adopted the style of multi-storied Buddhist halls. These phenomenon was result from periodical situation the monk carpenter and his disciple took part in governmental construction like Janganmun.

Multiple wall dampers for multi-mode vibration control of building structures under earthquake excitation

  • Rahman, Mohammad Sabbir;Chang, Seongkyu;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.537-549
    • /
    • 2017
  • One of the main concerns of civil engineering researchers is developing or modifying an energy dissipation system that can effectively control structural vibrations, and keep the structural response within tolerable limits during unpredictable events like earthquakes, wind and any kind of thrust load. This article proposes a new type of mass damper system for controlling wideband earthquake vibrations, called Multiple Wall Dampers (MWD). The basic principle of the Tuned Mass Damper (TMD) was used to design the proposed wall damper system. This passive energy dissipation system does not require additional mass for the damping system because the boundary wall mass of the building was used as a damper mass. The multi-mode approach was applied to determine the location and design parameters of the dampers. The dampers were installed based on the maximum amplitude of modes. To optimize the damper parameters, the multi-objective optimization Response Surface Methodology was used, with frequency response and maximum displacement as the objective functions. The obtained structural responses under different earthquake forces demonstrated that the MWD is one of the most capable tools for reducing the responses of multi-storied buildings, and this system can be practically used for new and existing building structures.

A Study on the Construction of Main Sanctuary of Dogapsa Temple -Focused on Establishing Bay of columns and Setback Technique in Upper Stories of Traditional Architecture with Multi Roof- (도갑사대웅보전(道岬寺大雄寶殿)의 조영(造營)에 관한 연구(硏究) -전통중층목조건축의 주칸설정과 상층체감기법을 중심으로-)

  • Shin, Woong-Ju;Lee, Bong-Soo;Park, Gang-Chul
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.13 no.1
    • /
    • pp.45-54
    • /
    • 2011
  • The results of examining the architectural features and changes of the main building of Dogapsa temple which is multi roofs wooden structure are as follows. The passage comparing 'Dogapsa' of <>, account of Lee Ha Gon's trip as the literature showing the appearance of Dogapsa temple in the early 18th century to Borimsa through verse of 'Dutacho' was noticeable. Dogapsa temple at Yeongam was distant over 100 ri from Borimsa temple at Jangheung and it was considered that there were many temples at Mt. Wolchul, Yeongam and there were also many temples to be comparable with it. But, Dogapsa temple was compared to Borimsa temple because verses 'many-storied building is high and immense' of 'Dogapsa' at <> and 'Dogapsa is lower than Borimsa at Jangheung' at 'Dutacho' of <> were interpreted as the existence of multi roofs Buddhist temple which had something in common with Dogapsa and Borimsa and was comparable to them. According to existing materials, it was assumed that the main building of Dogapsa was burnt through the Japanese invasion of Korea in the 52nd year of the sexagenary cycle (Eulmyooebyeon, 1555) and Jungyujaeran (1597), but record of major history of the main buildings of Dogapsa and Borimsa indicated that multi roofs wooden structure of the two temples were built at the same period. Since multi roofs wooden structure of main building of Borimsa was rebuilt in 1692, these buildings existed from the early 18th century to middle 18th century.

Ventilation Measurement with PFT in Three-storied Detached House (PFT법에 의한 수직적 3 ZONE 분할 조건에서의 환기량 측정)

  • Kim, Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.9
    • /
    • pp.506-515
    • /
    • 2013
  • The PFT (PerFluorocarbon Tracergas Technique) is of advantage to field surveys for evaluating the ventilation condition, due to its simplicity and convenience. On the other hand, it requires researchers to make some additional considerations that include uncertainties, such as the substance concentration distribution in indoor air, representativeness of a sampler, deviation of emission sources, and analysis error. In this study, the PFT and $CO_2$ tracer gas methods were applied simultaneously, to evaluate the accuracy of PFT on six ventilation conditions in the three-storied detached house. The air exchange and the outdoor air introduction a between and into zones were measured. As the results, deviations of PFT concentration distributions were observed at a sufficiently low level for an accurate determination for a house where the interior height was large, and there were relatively many partition walls. However, when a uniform airflow appeared in the indoor air, it was also validated that the indoor air would be exhausted without sufficient mixing, and consequently the measurement error of the PFT would be large.

Incorporation preference for rubber-steel bearing isolation in retrofitting existing multi storied building

  • Islam, A.B.M. Saiful;Jumaat, Mohd Zamin;Hussain, Raja Rizwan;Hosen, Md. Akter;Huda, Md. Nazmul
    • Computers and Concrete
    • /
    • v.16 no.4
    • /
    • pp.503-529
    • /
    • 2015
  • Traditionally, multi-story buildings are designed to provide stiffer structural support to withstand lateral earthquake loading. Introducing flexible elements at the base of a structure and providing sufficient damping is an alternative way to mitigate seismic hazards. These features can be achieved with a device known as an isolator. This paper covers the design of base isolators for multi-story buildings in medium-risk seismicity regions and evaluates the structural responses of such isolators. The well-known tower building for police personnel built in Dhaka, Bangladesh by the Public Works Department (PWD) has been used as a case study to justify the viability of incorporating base isolators. The objective of this research was to establish a simplified model of the building that can be effectively used for dynamic analysis, to evaluate the structural status, and to suggest an alternative option to handle the lateral seismic load. A finite element model was incorporated to understand the structural responses. Rubber-steel bearing (RSB) isolators such as Lead rubber bearing (LRB) and high damping rubber bearing (HDRB) were used in the model to insert an isolator link element in the structural base. The nonlinearities of rubber-steel bearings were considered in detail. Linear static, linear dynamic, and nonlinear dynamic analyses were performed for both fixed-based (FB) and base isolated (BI) buildings considering the earthquake accelerograms, histories, and response spectra of the geological sites. Both the time-domain and frequency-domain approaches were used for dynamic solutions. The results indicated that for existing multi-story buildings, RSB diminishes the muscular amount of structural response compared to conventional non-isolated structures. The device also allows for higher horizontal displacement and greater structural flexibility. The suggested isolation technique is able to mitigate the structural hazard under even strong earthquake vulnerability.

A Basic Study on the Evacuation Plans of Buildings (건축물의 피난계획에 관한 기초적 연구)

  • 고치원
    • Fire Science and Engineering
    • /
    • v.14 no.4
    • /
    • pp.1-6
    • /
    • 2000
  • With the "Fire Protection Building Plan" of the Building Center of Japan as a sample, actual evacuation plans used for large scaled and multi-storied buildings are analyzed. Sufficient number of samples were classified into 6 categories. For room evacuation, time to pass through the exit was the most critical point for larger spaces and movement time in the room was the key for smaller evacuation object zone and less number of evacuees. Seen from the location of fire breakout point, it was witnessed that the numbers of crowding at the exits of the fire escape staircase are serious for floor level evacuation. For vertical traffic line, it was actually proved that time to fire escaping floor is problem of higher buildings. It was also proved that special evacuation methods are in practical use in many buildings in japan.

  • PDF

Identifying stiffness irregularity in buildings using fundamental lateral mode shape

  • Vijayanarayanan, A.R.;Goswami, Rupen;Murty, C.V.R.
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.437-448
    • /
    • 2017
  • Soft or extreme soft storeys in multi-storied buildings cause localized damage (and even collapse) during strong earthquake shaking. The presence of such soft or extremely soft storey is identified through provisions of vertical stiffness irregularity in seismic design codes. Identification of the irregularity in a building requires estimation of lateral translational stiffness of each storey. Estimation of lateral translational stiffness can be an arduous task. A simple procedure is presented to estimate storey stiffness using only properties of fundamental lateral translational mode of oscillation (namely natural period and associated mode shape), which are readily available to designers at the end of analysis stage. In addition, simplified analytical expressions are provided towards identifying stiffness irregularity. Results of linear elastic time-history analyses indicate that the proposed procedure captures the irregularity in storey stiffness in both low- and mid-rise buildings.

An Experimental Study for Basic Properity of Ultra High-strength Concrete (초고강도 콘크리트의 기초물성에 관한 실험적 연구)

  • Kim Ji-Man;Gong Min-Ho;Yang Dong-Il;Jung Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.39-42
    • /
    • 2006
  • Recently, more highly effective construction materials are needed for the reasonable and economical structure system is required as the construction structures become more multi storied, large-sized and diversified. That is to say, the highly qualified concrete, the molt universal construction material is positively promoted as a part of plan to establish the effective space according to the dead load of structures and diminish of segment profile and to build up the economic structures. In particular, it is tendency of that the study for high strength concrete increases and construction example of reinforced concrete (RC) using the high strength concrete partially increases. However, the high strength concrete has the problems such high brittleness and low ductility. Specially, for the high strength concrete, it has different strength from normal concrete as the internal temperature goes up steadily due to high heat of hydration by the quantities of highly level of cement, so the concrete which is mixed with various scible materials is used. This study conducted a basic experiment to conclude an adequate selection of materials and to calculate an optimal mixing proportion of those materials to produce High-strength concrete. And also we conducted an experiment to find out basic properties of this concrete such as slump-flow, strength.

  • PDF

Study of strength Development of Ultra High-Strength Concrete (초고강도 콘크리트의 강도발현에 관한 기초적 연구)

  • Min, Hong-Jun;Gong, Min-Ho;Lim, Nam-Gi;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.75-79
    • /
    • 2006
  • Recently, more highly effective construction materials are needed for the reasonable and economical structure system is required as the construction structures become more multi storied, large-sized and diversified. That is to say, the highly qualified concrete is positively promoted as a part of plan to establish the effective space according to the dead load of structures and diminish of segment profile and to build up the economic structures. However, the high strength concrete has the problems such high brittleness and low ductility. Specially, for the high strength concrete, it has different strength from normal concrete as the internal temperature goes up steadily due to high heat of hydration by the quantities of highly level of cement, so the concrete which is mixed with various miscible materials is used. As the development and study for high strength concrete (more than $100N/mm^2$) is under way actively and the strength of high strength concrete increases, the strength different from the existing high strength concrete of ten than $100N/mm^2$, but the study for this is not adequate and indefinite. In addition, the study and report to apply the strength expression and analysis results of internal structure. Therefore, this study is an experiment about using the miscible materials affects what happens to the longitudinal physical property.

  • PDF

Investigation of the shear behaviour of multi-story reinforced concrete walls with eccentric openings

  • Taleb, Rafik;Bechtoula, Hakim;Sakashita, Masanubo;Bourahla, Noureddine;Kono, Susumu
    • Computers and Concrete
    • /
    • v.10 no.4
    • /
    • pp.361-377
    • /
    • 2012
  • Four Reinforced Concrete (RC) single span structural walls having various opening sizes and locations were constructed and tested under lateral reversed cyclic loading at the structural laboratory of Kyoto University. These specimens were scaled to 40% and represented the lower three stories of a six-storied RC building. The main purposes of the experimental tests were to evaluate the shear behavior and to identify the influence of opening ratios on the cracks distribution and shear strength of RC structural walls. The shear strength of the specimens was estimated by combining the shear strength of structural wall without openings and the reduction factor that takes into account the openings. Experimental and analytical results showed that the shear strength was different depending on the loading direction due to opening locations. A two-dimensional finite element analysis was carried out to simulate the performance of the tested specimens. The constructed finite elements model simulated the lateral load-drift angle relations quite well.