• Title/Summary/Keyword: multi-layer dielectric

Search Result 131, Processing Time 0.028 seconds

Polarizers and Splitters on the Base of Multi-layer Systems

  • L.I. Berezhinsky;Park, Dae-Yong;Sung, Chang-Min;Park, Byung-Sun;Kwon, Kwang-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.6
    • /
    • pp.21-27
    • /
    • 2003
  • Methods of calculation of polarizers and splitters for visible spectra based on a multi-layer dielectric system are considered. Practical formulas for calculation are given. For example the cases of a splitter calculation when R$\_$s/ > 70% and R$\_$p/$\leq$ 30% or R$\_$s/=R$\_$p/ were considered. The formulas of the effective layers method are of practical use. The optical characteristics of calculated and fabricated polarizers and splitters for 650nm and 780nm wavelengths are presented.

Implementation of Low Loss Radome with Hexa mesh for Ku-Band

  • Seo, Kang;JeongJin, Kang
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.555-560
    • /
    • 2022
  • In this study, the insertion loss and phase delay according to the multi-layer structure radome parameters were analyzed using the boundary value solution approach, and the multi-layer structure and hexa mesh structures with low-loss electrical characteristics for the Ku-band transmission/reception frequency of 10.7 ~ 14.5 GHz were designed and manufactured. A hexa mesh was applied to minimize radio wave transmission and scattering, which lowered the transmittance refractive index according to the radio incident angle and minimized dielectric loss through high-density foam. Similar to the simulation result, the transmission loss obtained the gain in a specific receiving frequency band, and in the transmission frequency band, an excellent low loss characteristic was obtained with an insertion loss of 0.8dB or less. The results of this study can be used in radio transmission radomes of low-weight, low-cost end-system protection devices.

Atomic layer chemical vapor deposition of Zr $O_2$-based dielectric films: Nanostructure and nanochemistry

  • Dey, S.K.
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.64.2-65
    • /
    • 2003
  • A 4 nm layer of ZrOx (targeted x-2) was deposited on an interfacial layer(IL) of native oxide (SiO, t∼1.2 nm) surface on 200 mm Si wafers by a manufacturable atomic layer chemical vapor deposition technique at 30$0^{\circ}C$. Some as-deposited layers were subjected to a post-deposition, rapid thermal annealing at $700^{\circ}C$ for 5 min in flowing oxygen at atmospheric pressure. The experimental x-ray diffraction, x-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and high-resolution parallel electron energy loss spectroscopy results showed that a multiphase and heterogeneous structure evolved, which we call the Zr-O/IL/Si stack. The as-deposited Zr-O layer was amorphous $ZrO_2$-rich Zr silicate containing about 15% by volume of embedded $ZrO_2$ nanocrystals, which transformed to a glass nanoceramic (with over 90% by volume of predominantly tetragonal-$ZrO_2$(t-$ZrO_2$) and monoclinic-$ZrO_2$(m-$ZrO_2$) nanocrystals) upon annealing. The formation of disordered amorphous regions within some of the nanocrystals, as well as crystalline regions with defects, probably gave rise to lattice strains and deformations. The interfacial layer (IL) was partitioned into an upper Si $o_2$-rich Zr silicate and the lower $SiO_{x}$. The latter was sub-toichiometric and the average oxidation state increased from Si0.86$^{+}$ in $SiO_{0.43}$ (as-deposited) to Si1.32$^{+}$ in $SiO_{0.66}$ (annealed). This high oxygen deficiency in $SiO_{x}$ indicative of the low mobility of oxidizing specie in the Zr-O layer. The stacks were characterized for their dielectric properties in the Pt/{Zr-O/IL}/Si metal oxide-semiconductor capacitor(MOSCAP) configuration. The measured equivalent oxide thickness (EOT) was not consistent with the calculated EOT using a bilayer model of $ZrO_2$ and $SiO_2$, and the capacitance in accumulation (and therefore, EOT and kZr-O) was frequency dispersive, trends well documented in literature. This behavior is qualitatively explained in terms of the multi-layer nanostructure and nanochemistry that evolves.ves.ves.

  • PDF

Towards Multi-color Microencapsulated Electrophoretic Display

  • Kim, Chul-Am;Myoung, Hey-Jin;Kang, Seung-Youl;Kim, Gi-Heon;Ahn, Seong-Deok;You, In-Kyu;Oh, Ji-Young;Baek, Kyu-Ha;Suh, Kyung-Soo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.464-467
    • /
    • 2005
  • In this paper, we present techniques to manufacture color electronic ink for multi-color electrophoretic display implementation. The charged color pigments have been prepared to have superior affinity for dielectric fluid. White $TiO_2$ nanoparticles were modified with poly(methyl methacrylate) copolymer for a microencapsulated electrophoretic display system, in order to reduce the density mismatch between nanoparticles and dielectric medium. These color balls and white pigment particle suspensions were microencapsulated through the typical microencapsulation technique. We fabricate the microcapsules to the single layer on flexible ITO substrate to test the multi-color electrophoretic display application.

  • PDF

Transparent and Flexible All-Organic Multi-Functional Sensing Devices Based on Field-effect Transistor Structure

  • Trung, Tran Quang;Tien, Nguyen Thanh;Seol, Young-Gug;Lee, Nae-Eung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.491-491
    • /
    • 2011
  • Transparent and flexible electronic devices that are light-weight, unbreakable, low power consumption, optically transparent, and mechanical flexible possibly have great potential in new applications of digital gadgets. Potential applications include transparent displays, heads-up display, sensor, and artificial skin. Recent reports on transparent and flexible field-effect transistors (tf-FETs) have focused on improving mechanical properties, optical transmittance, and performances. Most of tf-FET devices were fabricated with transparent oxide semiconductors which mechanical flexibility is limited. And, there have been no reports of transparent and flexible all-organic tf-FETs fabricated with organic semiconductor channel, gate dielectric, gate electrode, source/drain electrode, and encapsulation for sensor applications. We present the first demonstration of transparent, flexible all-organic sensor based on multifunctional organic FETs with organic semiconductor channel, gate dielectric, and electrodes having a capability of sensing infrared (IR) radiation and mechanical strain. The key component of our device design is to integrate the poly(vinylidene fluoride-triflouroethylene) (P(VDF-TrFE) co-polymer directly into transparent and flexible OFETs as a multi-functional dielectric layer, which has both piezoelectric and pyroelectric properties. The P(VDF-TrFE) co-polumer gate dielectric has a high sensitivity to the wavelength regime over 800 nm. In particular, wavelength variations of P(VDF-TrFE) molecules coincide with wavelength range of IR radiation from human body (7000 nm ~14000 nm) so that the devices are highly sensitive with IR radiation of human body. Devices were examined by measuring IR light response at different powers. After that, we continued to measure IR response under various bending radius. AC (alternating current) gate biasing method was used to separate the response of direct pyroelectric gate dielectric and other electrical parameters such as mobility, capacitance, and contact resistance. Experiment results demonstrate that the tf-OTFT with high sensitivity to IR radiation can be applied for IR sensors.

  • PDF

Fabrication process of embedded passive components in MCM-D (MCM-D 기판 내장형 수동소자 제조공정)

  • 주철원;이영민;이상복;현석봉;박성수;송민규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.4
    • /
    • pp.1-7
    • /
    • 1999
  • We developed Fabrication process of embedded passive components in MCM-D substrate. The proposed MCM-D substrate is based on Cu/photosensitive BCB multilayer. The substrate used is Si wafer and Ti/cu metallization is used to form the interconnect layer. Interconnect layers are formed with 1000$\AA$ Ti/3000$\AA$ Cu by sputtering method and 3$\mu\textrm{m}$ Cu by electrical plating method. In order to form the vias in photosensitive BCB layer, the process of BCB and plasma etch using $C_2F_6$ gas were evaluated. The MCM-D substrate is composed of 5 dielectric layers and 4 interconnect layers. Embedded resistors are made with NiCr and implemented on the $2^{nd}$ dielectric layer. The sheet resistance of NiCr is controlled to be about 21 $\Omega$/sq at the thickness of 600$\AA$. The multi-turn sprial inductors are designed in coplanar fashion on the $4^{th}$ interconnect layer with an underpass from the center to outside using the lower $3^{rd}$ interconnect layer. Capacitors are designed and realized between $1^{st}$ interconnect layer and $2^{nd}$ interconnect layer. An important issue in capacitor is the accurate determination of the dielectric thickness. We use the 900$\AA$ thickness of PECVD silicon nitride film as dielectric. Capacitance per unit area is about 88nF/$\textrm {cm}^2$at the thickness of 900$\AA$. The advantage of this integration process is the compatibility with the conventional semiconductor process due to low temperature PECVD silicon nitride process and thermal evaporation NiCr process.

  • PDF

Fabrication of Thin Film Dielectric by Hybrid Sol (Hybrid Sol을 이용한 박막 유전체 제작)

  • Kim, Yong-Suk;Yoo, Won-Hee;Chang, Byeung-Gyu;Oh, Yong-Soo
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.185-191
    • /
    • 2007
  • The purpose of this study is to evaluate the thin fihn dielectric made of hybrid sol, which consist of barium titanate powder, polymeric sol and other polymers. This sol will be used dielectric applied to small, thin electric passive components such as MLCC(Multi Layer Ceramic Condenser), resister, inductor. This sol is composed of mixed fine barium titanate powder and polymeric sol including Ba, Ti-precursor, solvent, chelating agent, chemical reaction catalyst, the additive sols to improve fired densification and temperature reliability. First at all, we mixed hybrid sol to be dispersed and be stabilized by ball milling for 24hrs. By spin coating method, we makes thin film dielectric on the convectional green sheet for MLCC. After heat treatments, we analyzes the structure morphology, physical, electrical properties and X5R Temperature properties.

The electrical characteristics of flexible organic field effect transistors with flexible multi-stacked hybrid encapsulation

  • Seol, Yeong-Guk;Heo, Uk;Park, Ji-Su;Lee, Nae-Eung;Lee, Deok-Gyu;Kim, Yun-Je;An, Cheol-Hyeon;Jo, Hyeong-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.176-176
    • /
    • 2010
  • One of the critical issues for applications of flexible organic thin film transistors (OTFTs) for flexible electronic systems is the electrical stabilities of the OTFT devices, including variation of the current on/off ratio (Ion/Ioff), leakage current, threshold voltage, and hysteresis under repetitive mechanical deformation. In particular, repetitive mechanical deformation accelerates the degradation of device performance at the ambient environment. In this work, electrical stability of the pentacene organic thin film transistors (OTFTs) employing multi-stack hybrid encapsulation layers was investigated under mechanical cyclic bending. Flexible bottom-gated pentacene-based OTFTs fabricated on flexible polyimide substrate with poly-4-vinyl phenol (PVP) dielectric as a gate dielectric were encapsulated by the plasma-deposited organic layer and atomic-layer-deposited inorganic layer. For cyclic bending experiment of flexible OTFTs, the devices were cyclically bent up to 105 times with 5mm bending radius. In the most of the devices after 105 times of bending cycles, the off-current of the OTFT with no encapsulation layers was quickly increased due to increases in the conductivity of the pentacene caused by doping effects from $O_2$ and $H_2O$ in the atmosphere, which leads to decrease in the Ion/Ioff and increase in the hysteresis. With encapsulation layers, however, the electrical stabilities of the OTFTs were improved significantly. In particular, the OTFTs with multi-stack hybrid encapsulation layer showed the best electrical stabilities up to the bending cycles of $10^5$ times compared to the devices with single organic encapsulation layer. Changes in electrical properties of cyclically bent OTFTs with encapsulation layers will be discussed in detail.

  • PDF

Study on a LTCC Diplexer Design for GSM/CDMA Applications (GSM/CDMA 대역용 LTCC Diplexer 설계 연구)

  • Kim, Tae-Wan;Lee, Young-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.632-635
    • /
    • 2008
  • In this paper, a diplexer circuit to separate GSM/CDMA band is designed using a LTCC (Low Temperature Cofired Ceramic) multi-layer technology. In order to increase a integration capability of the diplexer, it is designed in 6-layer LTCC sunstrate with a elative dielectric constant of 7.2 using 3-dimensional (3-D) multi-layer inductors and capacitors. The size of the designed diplexer including CB-CPW pads is $3,450{\times}4,000{\times}600{\mu}m^3$. An insertion loss (IL) and return loss of GSM band are less than -0.23dB and -10dB, respectively. In the case of CDMA band, the IL of -0.53dB and RL of below -10dB are archieved.

  • PDF

A selective formation of high-quality fully recessed oxide (양질의 FRO(fully recessed oxide)의 선택적 형성)

  • 류창우;심준환;이준희;이종현
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.7
    • /
    • pp.149-155
    • /
    • 1996
  • A new technique wasdeveloped which obtains selectively the htick fully recessed oxidized porous silicon layer (OPSL) with good dielectric property. The porous silicon layer was ocnverted to thick fully recessed oxide (FRO) with 3-step (1${\mu}$m, 1.5${\mu}$m, 1.8${\mu}$m) by multi-step thermal oxidation (after 400$^{\circ}$C, 1 hour by dry oxidation, 700$^{\circ}$C, 1 hour and then 1100$^{\circ}$C, 1 hour by wet oxidation). The breakdwon field of the FRO was about 2.5MV/cm and the leakage current was several pA ~ 100 pA in the range of 0 of 90 pF. The progress of oxidation of a porous silicon layer was studied by examining the infrared abosrption spectra. The refractive index (1.51) of the fRO, which was measured by ellipsometer, was comparable to that of the thermally grown silicon dioxide (1.46). The etching rate (1600${\AA}$/min) of the FRO was also almost equal to that of the thermal oxide.

  • PDF