• Title/Summary/Keyword: mouse spinal sensory neurons

Search Result 13, Processing Time 0.011 seconds

Effects of Sopunghwalhyul-tang Water Extract against Xanthine Oxidase / Hypoxanthine(XO/HX)-Induced Neurotoxicity in the Cultured Mouse Spinal Sensory Neurons (소풍활혈탕 열탕액이 XO/HX에 의해 손상된 배양 척수감각신경세포에 미치는 영향)

  • 양경석;신선호
    • The Journal of Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.29-39
    • /
    • 2000
  • In order to elucidate the toxic mechanism of oxygen radicals in cultured mouse spinal sensory neurons, cytotoxic effect of oxygen radicals was evaluated by M1T assay and NR assay. In addition, protective effect of Sopunghwalhyultang(SPHHT) water extract on oxidant-induced neurotoxicity was investigated on these cultures. Spinal sensory neurons derived from mice were cultured in mediums containing various concentrations of Xanthine Oxidase / Hypoxanthine(XO/HX). Cell viability was measured by MTT assay and NR assay. XO/HX-mediated oxygen radicals remarkably decreased cell viability of cultured spinal sensory neurons in a dose-and time-dependent manner. And also, SPHHT blocked XO/HX-induced neurotoxicity in these cultures. These results suggest that oxygen radicals are toxic and SPHHT are effective in blocking against the oxidant-induced neurotoxicity in cultures of spinal sensory neurons of mice.

  • PDF

Effects of Scorpio water extract on Cultured Spinal Sensory Neurons Damaged by Xanthine Oxidase/Hypoxanthine (전갈 전탕액이 XO/HX에 의해 손상된 배양 척수감각신경세포에 미치는 효과)

  • Yang Heung Su;Kwon Kang Beom;Song Yong Sun;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.553-556
    • /
    • 2002
  • To study the effects of Scorpio on oxygen free radical-mediated damage by xanthine oxidase/hypoxanthine (XO/HX) on cultured spinal sensory neurons, in vitro assays such as MTT assay were used in cultured spinal sensory neurons derived from mice. Spinal sensory neurons were cultured in media containing various concentrations of XO/HX for 6 hours, after which the neurotoxic effect of XO/HX was measured by in vitro assay. The protective effect of the herb extract, Scorpio water extract against XO/HX-induced neurotoxicity was also examined. The results are as follows : In MTT assay, XO/HX significantly decreased the cell viability of cultured mouse spinal sensory neurons according to exposure concentration and time in these cultures. The effect of Scorpio water extract on XO/HX-induced neurotoxicity showed a quantitative increase in neurdfilament. These results suggest that XO/HX has a neurotoxic effect on cultured spinal sensory neurons from mice and that the herb extract, Scorpio water extract, was very effective in protecting XO/HX-induced neurotoxicity.

Effects of Gamibojungikki-tang on Total Protein Synthesis of Cultured Spinal Sensory Neurons Damaged by GLUCOSE OXIDASE (가미보중익기탕이 GLUCOSE OXIDASE에 의해 손상된 배양 척수감각신경세포의 총단백질 합성량에 미치는 영향)

  • Ho Lee Chang;Beam Kwon Kang;Ho Jang Seung;Sun Song Yong;Gon Ryu Do
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.1
    • /
    • pp.141-145
    • /
    • 2002
  • In order to clarify the neuroprotective effect of Gamibojungikki-tang (GBJIKT) water extract on cultured mouse spinal sensory neuron damaged by glucose Oxidase (GO), MTT [3-(4,5-dimethylthiazole-2-yl) -2,5-diphenyltetrazolium bromide] assay and SRB (Sulforhodamine B) assay were carried out after the cultured mouse spinal sensory neuron were preincubated with various concentrations of GBJIKT water extract for 3 hours prior to exposure of GO. Cell viability of cultured mouse spinal sensory neurons exposed to various concentrations of GO for 8 hours was decreased in a dose-dependent manner. MTT50 values were 45 mU/ml GO. Cultured mouse spinal sensory neurons in the medium containing various concentration of GO for 8 hours showed decreasing of total protein synthesis. GO was toxic on cultured spinal sensory neurons. Pretreatment at GBJIKT water extract for 3 hours following GO prevented the GO-induced neurotoxicity such as decreasing of total protein synthesis. These results suggest that GO shows toxic effect on cultured spinal sensory neurons and GBJIKT water extract is highly effective in proecting the neurotoxicity induced by GO.

Effects of Gamibojungikki-tang on LDH activity of Cultured Spinal Sensory Neurons (가미보중익기탕이 배양 척수감각신경세포의 LDH 활성도에 미치는 영향)

  • Lee Chang Ha;Kwan Kang Beam;Park Jun Su;Song Yang Sun;Ryu Do Gen
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.343-347
    • /
    • 2002
  • In order to darify the neuroprotective effect of Gamibojungikki-tang(GBJIKT) water extract on cultured mouse spinal sensory neuron damaged by glucose Oxidase (GO), NR (Neutral Red) assay and LDH (Lactate Dehydrogenase) activity assay were carried out after the cultured mouse spinal sensory neuron were preincubated with various concentrations of GBJIKT water extract for 3 hours prior to exposure of GO. Cell viability of cultured mouse spinal sensory neurons exposed to various concentrations of GO for 8 hours was decreased in a dose-dependent manner. NR/sub 50/ values were 50 mU/ml GO. Cultured mouse spinal sensory neurons in the medium containing various concentration of GO for 8 hours showed increasing of LDH activity. We knew that GO was toxic on cultured spinal sensory neurons. Pretreatment of GBJIKT water extract for 3 hours following GO prevented the GO-induced neurotoxicity such as increasing of LDH activity. These results suggest that GO shows toxic effect on cultured spinal sensory neurons and GBJIKT water extract is highly effective in proecting the neurotoxicity induced by GO.

Effects of Herbar Chelidonii on the Cultured Spinal Sensory Neurons Damaged by XO/HX (백굴채(白屈菜)가 손상된 배양척수감각신경세포에 미치는 영향)

  • Shin, Byung-Cheul;Song, Yung-Sun
    • The Journal of Korea CHUNA Manual Medicine
    • /
    • v.2 no.1
    • /
    • pp.143-157
    • /
    • 2001
  • Objectives and Methods : To evaluate the mechanism of oxidative damage by xanthine oxydase(XO) and hypoxanthine(HX)-induced oxygen radicals, MTT assay and NR assay were carried out after the cultured mouse spinal sensory neurons were preincubated for 4 hours with various concentrations of XO/HX. And the amount of total protein. neurofilament EIA. lipid peroxidation and LDH activity were measured, to evaluate the protective effect of Herbar Chelidonii(HC) water extract on cultured spinal sensory neurons damaged by XO/HX. after the cultured mouse spinal sensory neurons were preincubated with various concentrations of HC water extract for 3 hours prior to exposure of XO/HX. Results : XO/HX decreased significantly the survival rate of the cultured mouse sensory neurons by NR assay and MTT assay In proportion to concentration and exposed time. In proportion to concentration and exposed time on cultured spinal sensory neurons, XO/HX showed the quantitative decrease of neurofilament by EIA. the decrease of total protein amount by SRB assay and the Increase of lipid peroxidation as well as LDH. HC showed the quantitative increase of neurofilament and total protein, but showed the decrease of lipid peroxidation and LDH activity against the neurotoxicity of XO/HX. Conclusions : From the above results, it is concluded that XO/HX have a neurotoxic effect on cultured spinal sensory neurons and that the herbs extract, such as HC, prevent the toxicity of XO/HX effectively in that they decrease lipid peroxidation and LDH activity.

  • PDF

Effects of Sintongchukeo-tang on the Cultured Spinal Sensory Neurons Injured by Hydrogen Peroxide (신통축어탕(身痛逐瘀湯)이 Hydrogen Peroxide에 의해 손상(損傷)된 배양(培養) 척수감각신경세포(脊髓感覺神經細胞)에 미치는 영향(影響))

  • Lee, Kye-Seung;Na, Young-Hoon;Cha, Yong-Suk;Heo, Yun;Kim, Do-Hwan;Han, Sang-Hyok;Park, Byong-Min;Lee, In;Moon, Byung-Soon
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.557-565
    • /
    • 2001
  • Objectives : This study was carried out to examine toxic effect of Sintongchukeo-tang on cultured mouse spinal sensory neurons inhibited by neurotoxicity induced by hydrogen peroxide. Methods : MTT assay, NR assay, LDH and neurofilament assay were performed after spinal sensory neurons were preincubater with various concentrations of Sintongchukeo-tang water extract before treatment of cells with hydrogen peroxide. Results : Hydrogen peroxide induced ceil degeneration such as the decrease of cell viability was measured by MTT and NR assay in the cultured mouse spinal sensory neurons. Sintongchukeo-tang water extract was effective in the decrease of LDH activities of neurons produced by hydrogen peroxide. Sintongchukeo-tang water extract was effective in the increase of amount of neurofilaments damaged by hydrogen peroxide. Conclusions : From the above results, it is suggested that hydrogen peroxide induces the inhibition of cell viability in cultured mouse spinal sensory neurons and Sintongchukeo-tang water extract was effective in cultured neurons damaged by hydrogen peroxide.

  • PDF

Effects of Jingansikpung-tang and Gamijingansikpung-tang Water Extract on the Cultured Spinal Sensory Neurons (진간식풍탕 및 가미진간식풍탕 추출물이 배양 척수감각신경세포에 미치는 영향)

  • Seo Young Suk;Yun Sang Hak;Yeom Seung Ryong;Lee Su kyung;Shin Byung Cheul;Kwon Young Dal;Song Yung Sun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.374-379
    • /
    • 2003
  • To evaluate the mechanism of oxidative damage by Xanthine oxidase(XO) and hypoxanthine(HX)-induced oxygen radicals, XTT assay was carried out. Neurofilament EIA and PKC activity were measured to evaluate the protective effect of Jingansikpung-tang(JST) and Gamijingansikpung-tang(GJST) water extract on cultured spinal sensory neurons damaged by XO/HX, after the cultured mouse spinal sensory neurons were preincubated with various concentrations of JST and GJST water extract for 3 hours prior to exposure of XO/HX. The results were XO/HX decreased significantly, in proportion to concentration and exposed time, the survival rate of the cultured mouse sensory neurons on XTT assay. And in proportion to concentration and exposed time on cultured spinal sensory neurons, XO/HX showed the quantitative decrease of neurofilament by EIA, increase of PKC activity, but JST and GJST showed the neuroprotective effects against decrease of neurofilament and increase of PKC activity by XO/HX. From the above results, it is concluded that XO/HX have a neurotoxic effect on cultured spinal sensory neurons and the herbs water extract, such as JST and GJST prevent the toxicity of XO/HX effectively.

Effects of Jingansikpung-tang Water Extract on LDH Activity of Cultured Spinal Sensory Neurons Damaged by GO (진간식풍탕 전탕액이 GO에 의해 손상된 배양 척수감각신경세포의 LDH 활성도에 미치는 영향)

  • Park Kwang Su;Kwon Kang Beam;Seong Eun Kyung;Song Yong Sun;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.563-566
    • /
    • 2002
  • To evaluate the effect of Jingansikpung-tang(JST) water extract on cultured mouse spinal sensory neuron which was inhibited by glucose oxidase(GO)-induced cytotoxicity, MTT and LDH activity assay were carried out after the cultured mouse spinal sensory neuron were pre-incubated with various concentrations of JST extract for 3 hours prior to exposure of GO. The results obtained were as follows: GO, a oxygen radical, decreased the survival rate of the cultured mouse spinal sensory neuron cells on MTT assay. JST water extract have efficacy of decreasing LDH activity increasing by GO in cultured mouse spinal sensory neuron. From above the results, it is concluded that JST water extract has marked efficacy as a treatment for the damages caused in the GO-mediated oxidative process.

Effects of Baepungtang water extract on Cultured Spinal Sensory neurons Damaged by Xanthine Oxidase/Hypoxanthine (배풍탕(排風湯) 전탕액(煎湯液)이 XO/HX에 의해 손상(損傷)된 배양(培養) 척수감각신경세포(脊髓感覺神經細胞)에 미치는 효과(效果))

  • Yu Jin-Deok;Yun Yong-Gap
    • Herbal Formula Science
    • /
    • v.8 no.1
    • /
    • pp.319-328
    • /
    • 2000
  • To evaluate the effect of Baepungtang(BPT) water extract on cultured mouse spinal sensory neuron which was inhibited by xanthine oxidase(XO) and hypoxanthine(HX)-induced oxigen radicals, MTT assay, NR assay, Neurofilament enzymeimmuno assay and LDH activity assay were carried out after the cultured mouse spinal sensory neuron were preincubated with various concentrations of BPT water extract for 3 hours prior to exposure of XO/HX. The results obtained were as follows: 1. XO/HX, a oxigen radical, decreased the survival rate of the cultured mouse spinal sensory neuron cell on NR assay and MTT assay. 2. $MTT_{50}$ value and $NR_{50}$ value of XO/HX were 30 mU/ml XO/O.2 mM HX. 3. BPT water extract have efficacy of increasing neurofilament. 4. BPT water extract have efficacy of increasing LDH activity. From above the results, It is concluded that BPT has marked efficacy as a treatment for the damages caused in the XO/HX-mediated oxidative process.

  • PDF

Neurotoxicity of Sodium Salicylate on Spinal Sensory Neurons in Culture (배양 척수감각신경세포에 대한 살리실산 나트륨의 신경독성에 관한 연구)

  • Lee, Kang-Chang;Choi, Yu-Sun;Park, Seung-Taeck
    • The Korean Journal of Pain
    • /
    • v.14 no.2
    • /
    • pp.136-141
    • /
    • 2001
  • Background: Sodium salicylate (SS) is a nonsteroidal anti-inflammatory drug (NSAID) for the treatment of neuralgia or pain from rheumatoid arthritis. When abused or used in excess, SS can induce cytotoxicity. The present study examined whether SS has a neurotoxic effect. Methods: Cell viability was examined by MTT [3-(4,5-dimethylthiazol-2,5-dipheny ltetrazolium bromide] assay and Sulforhodamine (SRB) assay after cultivating dorsal root ganglion (DRG) neurons derived from neonatal mouse. These cells were treated with various concentrations of SS for 24 hours. In addition, the amount of protein synthesis against SS was measured in these cultures. Results: Cell viability (20, $40{\mu}g/ml$ SS) significantly decreased in a dose-dependent manner. Additionally, SS inhibited protein synthesis after the exposure of cultured mouse DRG neurons to $30{\mu}g/ml$ of SS for 24 hours. Conclusions: The present study suggests that SS is toxic in cultured DRG neurons derived from neonatal mouse by decreasing cell viability and the amount of protein synthesis.

  • PDF