• 제목/요약/키워드: mount

Search Result 1,339, Processing Time 0.026 seconds

Durability Analysis on Automotive Engine Mount (자동차 엔진마운트의 내구성 해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.141-147
    • /
    • 2012
  • Engine mount is used to soften the impact of bumper with elasticity recovery and damping capacity. Inner noise and vibration to influence the comfortableness for passenger cause the engine to the chattering phenomenon. In this study, structural analysis can be done by engine mounts designed with 3D modelling. Natural frequencies and harmonic responses are analyzed by using models with some kinds of configurations. When the simulation model is applied by the force of 600N within the range of natural frequencies, the magnitude of deformation becomes 0 to 3mm. As the number of holes around inside mount increases, the capability of vibration absorption and durability becomes larger. In case of 5holes around inside mount, it can be safest on durability. The life of mount becomes larger by changing the configuration of model. The engine mount improved with durability can be designed through the result of simulation.

Dynamic Properties of Squeeze Type Mount Using MR Fluid (MR유체를 이용한 스퀴즈모드형 마운트의 동특성)

  • 하종용;안영공;양보석;정석권;김동조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.374-378
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (Magneto-Rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field s strength. In the present work, the performance of the mount was experimentally investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic filed strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

  • PDF

Dynamic Properties of Squeeze Type Mount Using MR Fluid (MR 유체를 이용한 스퀴즈모드형 마운트의 동특성)

  • 안영공
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.490-495
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (magneto-rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field strength. In the present work, the performance of the mount was experimentally Investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic field strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

Integrated System for Dynamic Analysis and Optimal Design of Engine Mount Systems (엔진 마운트의 동특성 해석 및 최적설계 시스템)

  • 임홍재;성상준;이상범
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.36-40
    • /
    • 2001
  • In this paper, an integrated system for dynamic analysis and optimal design of engine mount systems is presented. The system can simulate static and dynamic behaviors of engine mount systems and optimize design parameters such as mount stiffness, mounting locations with desired design targets of frequency or displacement. A FF-engine with an automatic transmission is used to demonstrate the analysis and optimal design capabilities of the proposed design system.

  • PDF

Dynamic Analysis and Optimal Design of Engine Mount Systems with Consideration of Foundation Flexibility

  • Lee, Sang-Beom;Yim, Hong-Jae;Lee, Jang-Moo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2E
    • /
    • pp.51-58
    • /
    • 2001
  • Equations of motion of an engine mount system including foundation flexibility are derived. Forced vibration analysis is carried out for the given engine mount system excited with the unbalanced force and moment. A new optimal design method for the engine mount system is proposed, in which vibration characteristics of the chassis frame structure are considered as design parameters.

  • PDF

Development of Viscous Cabin Mount for Excavator (액체봉입형 Viscous 굴삭기 Cabin Mount 개발)

  • 김원영;전범석;박외경;강하근
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.339-344
    • /
    • 1997
  • Samsung Ltd. has developed a new-type cab mount for specific use on construct ion machinery subjected to strong vibration and multi-directional impact force. These all make it possible to achieve an excellent damping effect over a wide frequency range against large amplitude vibration as well as excellent insulation against small-amplitude vibration. This new mount make lower vibration and noise levels while increasing riding comfort at the same time. Characteristics of Cab mount were optimized through computer simulation, advanced bench testing, ODS testing, and a real equipment offroad testing.

  • PDF

Control Characteristics of ER engine mount considering Temperature Variation (온도 변화에 따른 ER 엔진마운트의 제어 특성)

  • Song, Hyun-Jeong;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.180-183
    • /
    • 2005
  • The engine mount of vehicle systems is role of support engine mass and isolate noise and vibration from engine disturbance forces. One of attractive candidates to achieve this goai is to utilize a semi-active ER engine mount. By applying this, we can effectively control damping force and hence the noise and vibration by just controlling the intensity of electric field. However, control performance of the engine mount may be very sensitive to temperature variation during engine operation. In this work, we Investigate dynamic performances of ER engine mount with respect to the temperature variation. In order to undertake this, a flow-mode type of ER engine mount is designed and manufactured. Displacement transmissibility is experimentally and numerically evaluated as a function of the electric field. The ER engine mount is then incorporated with full-vehicle model in order to investigate vibration control performance. After formulating the governing equation of motion, a semi-active controller is designed. The controller is implemented through a hardware-in-the-loop simulation (HILS), and control responses such as acceleration level at various engine speeds are evaluated in the frequency and time domains.

  • PDF

Active Vibration Control of Automotive Engine Mount Using MR Fluid and Piezostack (MR 유체와 압전 작동기를 이용한 자동차 엔진 마운트의 능동진동제어)

  • Choi, Sang-Min;Nguyen, Vien-Quoc;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.237-242
    • /
    • 2008
  • This paper presents vibration control of an active hybrid engine mount featuring magneto-rheological (MR) fluid and a piezostack actuator. On the basis of the conventional passive rubber mount, MR fluid is adopted to improve isolation performance at resonant frequencies, whereas the piezostack actuator is adopted for performance improvement at non-resonant frequencies, especially at high frequencies. Based on some particular practical requirements of engine mounts, the proposed mount is designed and manufactured. The characteristics of rubber element, piezostack actuator and MR fluid are verified for system analysis and controller synthesis. The model of the proposed mount with a supported mass (engine) is established. In this work, a sliding mode controller is synthesized for the mount system to reduce vibrations transmitted from the engine in a wide frequency range. Computer simulations are performed to evaluate the performances of the proposed active engine mount in time and frequency domains.

  • PDF

Computational Modeling of Mount Joint Part of Machine Tools (공작기계 마운트 결합부의 전산 모델링)

  • Ha, Tae-Ho;Lee, Jae-Hak;Lee, Chan-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1056-1061
    • /
    • 2012
  • FEM analysis is essential to shorten the development time and reduce the cost for developing high-performance machine tools. Mount joint parts play important role to ensure static and dynamic stability of machine tools. This paper suggests a computational modeling of mount joint part of machine tools. MATRIX27 element of ANSYS is adopted to model mount joint parts. MATRIX27 allows the definition of stiffness and damping matrices in matrix form. The matrix is assumed to relate two nodes, each with six degrees of freedom per node. Stiffness and damping values of commercial mount products are measured to build a database for FEM analysis. Jack mounts with rubber pad are exemplified in this paper. The database extracted from the experiments is also used to estimate of stiffness and damping of untested mounts. FEM analysis of machine tools system with the suggested mount computational model is performed. Static and dynamic results prove the feasibility of the suggested mount model.