• Title/Summary/Keyword: motion error

Search Result 1,367, Processing Time 0.033 seconds

Analysis of Respiratory Motional Effect on the Cone-beam CT Image (Cone-beam CT 영상 획득 시 호흡에 의한 영향 분석)

  • Song, Ju-Young;Nah, Byung-Sik;Chung, Woong-Ki;Ahn, Sung-Ja;Nam, Taek-Keun;Yoon, Mi-Sun
    • Progress in Medical Physics
    • /
    • v.18 no.2
    • /
    • pp.81-86
    • /
    • 2007
  • The cone-beam CT (CBCT) which is acquired using on-board imager (OBI) attached to a linear accelerator is widely used for the image guided radiation therapy. In this study, the effect of respiratory motion on the quality of CBCT image was evaluated. A phantom system was constructed in order to simulate respiratory motion. One part of the system is composed of a moving plate and a motor driving component which can control the motional cycle and motional range. The other part is solid water phantom containing a small cubic phantom ($2{\times}2{\times}2cm^3$) surrounded by air which simulate a small tumor volume in the lung air cavity CBCT images of the phantom were acquired in 20 different cases and compared with the image in the static status. The 20 different cases are constituted with 4 different motional ranges (0.7 cm, 1.6 cm, 2.4 cm, 3.1 cm) and 5 different motional cycles (2, 3, 4, 5, 6 sec). The difference of CT number in the coronal image was evaluated as a deformation degree of image quality. The relative average pixel intensity values as a compared CT number of static CBCT image were 71.07% at 0.7 cm motional range, 48.88% at 1.6 cm motional range, 30.60% at 2.4 cm motional range, 17.38% at 3.1 cm motional range The tumor phantom sizes which were defined as the length with different CT number compared with air were increased as the increase of motional range (2.1 cm: no motion, 2.66 cm: 0.7 cm motion, 3.06 cm: 1.6 cm motion, 3.62 cm: 2.4 cm motion, 4.04 cm: 3.1 cm motion). This study shows that respiratory motion in the region of inhomogeneous structures can degrade the image quality of CBCT and it must be considered in the process of setup error correction using CBCT images.

  • PDF

Evaluation of MR Based Respiratory Motion Correction Technique in Liver PET/MRI Study (Liver PET/MRI 검사 시 MR 기반 호흡 움직임 보정 방법의 유용성 평가)

  • Do, Yong Ho;Lee, Hong Jae;Kim, Jin Eui;Noh, Gyeong Woon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.15-22
    • /
    • 2018
  • Purpose Respiratory motion during PET/MRI acquisition may result in image blurring and error in measurement for volume and quantification of lesion. The aim of this study was to evaluate changes of quantitative accuracy, tumor size and image quality by applying MR based respiratory motion correction technique (MBRMCT) using integrated PET/MR scanner. Materials and Methods Data of 30 patients (aged $62.5{\pm}10.2y$) underwent $^{18}F-FDG$ liver PET/MR (Biograph mMR 3.0T, Siemens) study were collected. PET listmode data for 7 minutes was simultaneously acquired with maximum average gate (MAG), minimum time gate (MTG) and non gate (NG) T1 weighted MR images. Gated PET reconstruction was performed using mu-maps generated from MAG and MTG by setting 35% of efficiency window. Maximum SUV ($SUV_{max}$), peak SUV ($SUV_{peak}$), tumor size and full width at half maximum (FWHM) in the z-axis direction of MAG, MTG and NG PET images were evaluated. Results Compared to NG, mean $SUV_{max}$ and $SUV_{peak}$ were increased in MAG 13.15%(p<0.0001), 8.66%(p<0.0001), MTG 13.27%(p<0.0001), 8.80%(p<0.0001) and mean tumor size and FWHM were decreased in MAG 14.47%(p<0.0001), 15.49%(p=0.0004), MTG 14.89%(p<0.0001), 15.79%(p=0.0003) respectively. Mean $SUV_{max}$ and $SUV_{peak}$ of MTG were increased by 0.07%(p=0.8802), 0.13%(p=0.7766). Mean tumor size and FWHM of MTG were decreased by 0.49%(p=0.2786), 0.36%(p=0.2488) compared to MAG. There was no statistically significant difference between MAG and MTG which increase total scan time for about 7 and 2 minutes. Conclusion SUV, accuracy of tumor size and spatial resolution were improved in both of MAG and MTG by applying MBRMCT without installing additional hardware in liver PET/MR study. More accurate information can be provided with the increase of 2 minutes scan time if applying MTG of MBRMCT to various abdominal PET/MR studies affected by respiratory motion.

Prediction of Target Motion Using Neural Network for 4-dimensional Radiation Therapy (신경회로망을 이용한 4차원 방사선치료에서의 조사 표적 움직임 예측)

  • Lee, Sang-Kyung;Kim, Yong-Nam;Park, Kyung-Ran;Jeong, Kyeong-Keun;Lee, Chang-Geol;Lee, Ik-Jae;Seong, Jin-Sil;Choi, Won-Hoon;Chung, Yoon-Sun;Park, Sung-Ho
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.132-138
    • /
    • 2009
  • Studies on target motion in 4-dimensional radiotherapy are being world-widely conducted to enhance treatment record and protection of normal organs. Prediction of tumor motion might be very useful and/or essential for especially free-breathing system during radiation delivery such as respiratory gating system and tumor tracking system. Neural network is powerful to express a time series with nonlinearity because its prediction algorithm is not governed by statistic formula but finds a rule of data expression. This study intended to assess applicability of neural network method to predict tumor motion in 4-dimensional radiotherapy. Scaled Conjugate Gradient algorithm was employed as a learning algorithm. Considering reparation data for 10 patients, prediction by the neural network algorithms was compared with the measurement by the real-time position management (RPM) system. The results showed that the neural network algorithm has the excellent accuracy of maximum absolute error smaller than 3 mm, except for the cases in which the maximum amplitude of respiration is over the range of respiration used in the learning process of neural network. It indicates the insufficient learning of the neural network for extrapolation. The problem could be solved by acquiring a full range of respiration before learning procedure. Further works are programmed to verify a feasibility of practical application for 4-dimensional treatment system, including prediction performance according to various system latency and irregular patterns of respiration.

  • PDF

Numerical Test for the 2D Q Tomography Inversion Based on the Stochastic Ground-motion Model (추계학적 지진동모델에 기반한 2D Q 토모그래피 수치모델 역산)

  • Yun, Kwan-Hee;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.191-202
    • /
    • 2007
  • To identify the detailed attenuation structure in the southern Korean Peninsula, a numerical test was conducted for the Q tomography inversion to be applied to the accumulated dataset until 2005. In particular, the stochastic pointsource ground-motion model (STGM model; Boore, 2003) was adopted for the 2D Q tomography inversion for direct application to simulating the strong ground-motion. Simultaneous inversion of the STGM model parameters with a regional single Q model was performed to evaluate the source and site effects which were necessary to generate an artificial dataset for the numerical test. The artificial dataset consists of simulated Fourier spectra that resemble the real data in the magnitude-distance-frequency-error distribution except replacement of the regional single Q model with a checkerboard type of high and low values of laterally varying Q models. The total number of Q blocks used for the checkerboard test was 75 (grid size of $35{\times}44km^2$ for Q blocks); Q functional form of $Q_0f^{\eta}$ ($Q_0$=100 or 500, 0.0 < ${\eta}$ < 1.0) was assigned to each Q block for the checkerboard test. The checkerboard test has been implemented in three steps. At the first step, the initial values of Q-values for 75 blocks were estimated. At the second step, the site amplification function was estimated by using the initial guess of A(f) which is the mean site amplification functions (Yun and Suh, 2007) for the site class. The last step is to invert the tomographic Q-values of 75 blocks based on the results of the first and second steps. As a result of the checkerboard test, it was demonstrated that Q-values could be robustly estimated by using the 2D Q tomography inversion method even in the presence of perturbed source and site effects from the true input model.

Respiratory signal analysis of liver cancer patients with respiratory-gated radiation therapy (간암 호흡동조 방사선치료 환자의 호흡신호분석)

  • Kang, dong im;Jung, sang hoon;Kim, chul jong;Park, hee chul;Choi, byung ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.1
    • /
    • pp.23-30
    • /
    • 2015
  • Purpose : External markers respiratory movement measuring device (RPM; Real-time Position Management, Varian Medical System, USA) Liver Cancer Radiation Therapy Respiratory gated with respiratory signal with irradiation time and the actual research by analyzing the respiratory phase with the breathing motion measurement device respiratory tuning evaluate the accuracy of radiation therapy Materials and Methods : May-September 2014 Novalis Tx. (Varian Medical System, USA) and liver cancer radiotherapy using respiratory gated RPM (Duty Cycle 20%, Gating window 40% ~ 60%) of 16 patients who underwent total when recording the analyzed respiratory movement. After the breathing motion of the external markers recorded on the RPM was reconstructed by breathing through the acts phase analysis, for Beam-on Time and Duty Cycle recorded by using the reconstructed phase breathing breathing with RPM gated the prediction accuracy of the radiation treatment analysis and analyzed the correlation between prediction accuracy and Duty Cycle in accordance with the reproducibility of the respiratory movement. Results : Treatment of 16 patients with respiratory cycle during the actual treatment plan was analyzed with an average difference -0.03 seconds (range -0.50 seconds to 0.09 seconds) could not be confirmed statistically significant difference between the two breathing (p = 0.472). The average respiratory period when treatment is 4.02 sec (${\pm}0.71sec$), the average value of the respiratory cycle of the treatment was characterized by a standard deviation 7.43% (range 2.57 to 19.20%). Duty Cycle is that the actual average 16.05% (range 13.78 to 17.41%), average 56.05 got through the acts of the show and then analyzed% (range 39.23 to 75.10%) is planned in respiratory research phase (40% to 60%) in was confirmed. The investigation on the correlation between the ratio Duty Cycle and planned respiratory phase and the standard deviation of the respiratory cycle was analyzed in each -0.156 (p = 0.282) and -0.385 (p = 0.070). Conclusion : This study is to analyze the acts after the breathing motion of the external markers recorded during the actual treatment was confirmed in a reproducible ratios of actual treatment of breathing motion during treatment, and Duty Cycle, planned respiratory gated window. Minimizing an error of the treatment plan using 4DCT and enhance the respiratory training and respiratory signal monitoring for effective treatment it is determined to be necessary.

  • PDF

Performance Evaluation of the Tumor Tracking Method Using Beam on/off Interface for the Treatment of Irregular Breathing (호흡이 불규칙한 환자의 치료를 위한 Beam on/off Interface를 이용한 종양 추적 치료 방법의 성능 평가)

  • Lee, Minsik
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.343-349
    • /
    • 2018
  • Dose rate regulated tracking is known to be an efficient method which adaptively delivers tracking treatments when patient breathing is irregular. The Motion Management Interface (MMI, Varian Medical System, CA), which provides beam on/off switching during treatment is available for clinic. Study is to test if delivering the adaptive tumor tracking is feasible for irregular breathing using beam switching with MMI. 55 free breathing RPM traces acquired from lung cancer patients are used. The first day RPM traces of the patients are utilized to design preprogrammed tracking MLC patterns, of which periods are intentionally reduced by 20% in order to catch up the variation of patient breathing irregularity in the treatment day. Eligibility criteria for this technique are the variation of amplitude and period less than 20%. An algorithm which determines beam on/off every 100 ms by considering the preprogrammed (MLC) positions and current breathing positions is developed. Tracking error and delivery efficacy are calculated by simulating the beam-switching adaptive tracking from the RPM traces. Breathing patterns of 38 patients (70%) met the eligibility criteria. Tracking errors of all of the cases who meet the criteria are less than 2 mm (average 1.4 mm) and the average delivery efficacy was 71%. Those of rest of the cases are 1.9 mm and 48%. Adaptive tracking with beam switching is feasible if patient selection is based on the eligibility criteria.

Investigation of image preprocessing and face covering influences on motion recognition by a 2D human pose estimation algorithm (모션 인식을 위한 2D 자세 추정 알고리듬의 이미지 전처리 및 얼굴 가림에 대한 영향도 분석)

  • Noh, Eunsol;Yi, Sarang;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.285-291
    • /
    • 2020
  • In manufacturing, humans are being replaced with robots, but expert skills remain difficult to convert to data, making them difficult to apply to industrial robots. One method is by visual motion recognition, but physical features may be judged differently depending on the image data. This study aimed to improve the accuracy of vision methods for estimating the posture of humans. Three OpenPose vision models were applied: MPII, COCO, and COCO+foot. To identify the effects of face-covering accessories and image preprocessing on the Convolutional Neural Network (CNN) structure, the presence/non-presence of accessories, image size, and filtering were set as the parameters affecting the identification of a human's posture. For each parameter, image data were applied to the three models, and the errors between the actual and predicted values, as well as the percentage correct keypoints (PCK), were calculated. The COCO+foot model showed the lowest sensitivity to all three parameters. A <50% (from 3024×4032 to 1512×2016 pixels) reduction in image size was considered acceptable. Emboss filtering, in combination with MPII, provided the best results (reduced error of <60 pixels).

Verification of X-sight Lung Tracking System in the CyberKnife (사이버나이프에서 폐종양 추적 시스템의 정확도 분석)

  • Huh, Hyun-Do;Choi, Sang-Hyoun;Kim, Woo-Chul;Kim, Hun-Jeong;Kim, Seong-Hoon;Cho, Sam-Ju;Min, Chul-Ki;Cho, Kwang-Hwan;Lee, Sang-Hoon;Choi, Jin-Ho;Lim, Sang-Wook;Shin, Dong-Oh
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.174-179
    • /
    • 2009
  • To track moving tumor in real time, CyberKnife system imports a technique of the synchrony respiratory tracking system. The fiducial marker which are detectable in X-ray images were demand in CyberKnife Robotic radiosurgery system. It issued as reference markers to locate and track tumor location during patient alignment and treatment delivery. Fiducial marker implantation is an invasive surgical operation that carries a relatively high risk of pneumothorax. Most recently, it was developed a direct lung tumor registration method that does not require the use of fiducials. The purpose of this study is to measure the accuracy of target applying X-sight lung tracking using the Gafchromic film in dynamic moving thorax phantom. The X-sight Lung Tracking quality assurance motion phantom simulates simple respiratory motion of a lung tumor and provides Gafchromic dosimetry film-based test capability at locations inside the phantom corresponding to a typical lung tumor. The total average error for the X-sight Lung Tracking System with a moving target was $0.85{\pm}0.22$ mm. The results were considered reliable and applicable for lung tumor treatment in CyberKnife radiosurgery system. Clinically, breathing patterns of patients may vary during radiation therapy. Therefore, additional studies with a set real patient data are necessary to evaluate the target accuracy for the X-sight Lung Tracking system.

  • PDF

Study of the Respiratory Monitoring System by Using the MEMS Acceleration Sensor (MEMS 가속도 센서를 이용한 환자 호흡동작 모니터링 체계 연구)

  • Sung, Jiwon;Yoon, Myonggeun;Chung, Weon Kuu;Kim, Dong Wook;Shin, Dong Oh
    • Progress in Medical Physics
    • /
    • v.24 no.1
    • /
    • pp.61-67
    • /
    • 2013
  • In this study, we developed and evaluated the patient respiration training method which can help to avoid the problems for the limitation of RGRT applicable patient cases. By using the MEMS (micro-electro-mechanical-system) acceleration sensor, we measured movement of motion phantom. We had compared the response of MEMS with commercially introduced real time patient monitoring (RPM) system. We measured the response of the MEMS with 1 dimensional motion phantom movement for 2.5, 3.0, 3.5 second of period and the 2.0, 3.0, 4.0 cm of the amplitudes. The measured period error of the MEMS system was 0.6~6.0% compared with measured period using RPM system. We found that the shape of MEMS signals were similar with RPM system. From this study, we found the possibility of MEMS as patient training system.

Land Preview System Using Laser Range Finder based on Heave Estimation (Heave 추정 기반의 레이저 거리측정기를 이용한 선행지형예측시스템)

  • Kim, Tae-Won;Kim, Jin-Hyoung;Kim, Sung-Soo;Ko, Yun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.1
    • /
    • pp.64-73
    • /
    • 2012
  • In this paper, a new land preview system using laser range finder based on heave estimation algorithm is proposed. The proposed land preview system is an equipment which measures the shape of forward topography for autonomous vehicle. To implement this land preview system, the laser range finder is generally used because of its wide measuring range and robustness under various environmental condition. Then the current location of the vehicle has to be known to generate the shape of forward topography and sensors based on acceleration such as IMU and accelerometer are generally utilized to measure heave motion in the conventional land preview system. However the drawback to these sensors is that they are too expensive for low-cost vehicle such as mobile robot and their measurement error is increased for mobile robot with abrupt acceleration. In order to overcome this drawback, an algorithm that estimates heave motion using the information of odometer and previously measured topography is proposed in this paper. The proposed land preview system based on the heave estimation algorithm is verified through simulation and experiments for various terrain using a simulator and a real system.