Verification of X-sight Lung Tracking System in the CyberKnife

사이버나이프에서 폐종양 추적 시스템의 정확도 분석

  • Huh, Hyun-Do (Department of Radiation Oncology, College of Medicine, Inha University) ;
  • Choi, Sang-Hyoun (Department of Radiation Oncology, College of Medicine, Inha University) ;
  • Kim, Woo-Chul (Department of Radiation Oncology, College of Medicine, Inha University) ;
  • Kim, Hun-Jeong (Department of Radiation Oncology, College of Medicine, Inha University) ;
  • Kim, Seong-Hoon (Department of Radiation Oncology, College of Medicine, Hanyang University) ;
  • Cho, Sam-Ju (Department of Radiation Oncology, Medical Center, Eulji University) ;
  • Min, Chul-Ki (Department of Radiation Oncology, College of Medicine, Konyang Univerisity) ;
  • Cho, Kwang-Hwan (Department of Radiation Oncology, College of Medicne, Soonchunhyang University) ;
  • Lee, Sang-Hoon (Department of Radiation Oncology, College of Medicine, Kwandong Univerisity) ;
  • Choi, Jin-Ho (Department of Radiation Oncology, Gachon, Medical School) ;
  • Lim, Sang-Wook (Department of Radiation Oncology, Kosin University Gospel Hospital, Kosin University College of Medicine) ;
  • Shin, Dong-Oh (Department of Radiation Oncology, College of Medicine, KyungHee University)
  • 허현도 (인하대학교 의과대학 방사선종양학교실) ;
  • 최상현 (인하대학교 의과대학 방사선종양학교실) ;
  • 김우철 (인하대학교 의과대학 방사선종양학교실) ;
  • 김헌정 (인하대학교 의과대학 방사선종양학교실) ;
  • 김성훈 (한양대학교 의과대학 방사선종양학교실) ;
  • 조삼주 (을지대학교 의과대학 방사선종양학교실) ;
  • 민철기 (건양대학교 의과대학 방사선종양학교실) ;
  • 조광환 (순천향대학교 의과대학 방사선종양학교실) ;
  • 이상훈 (관동대학교 의과대학 방사선종양학교실) ;
  • 최진호 (가천의과학대학교 길병원 방사선종양학교실) ;
  • 임상욱 (고신대학교 의과대학 방사선종양학교실) ;
  • 신동오 (경희대학교 의과대학 방사선종양학교실)
  • Published : 2009.09.30

Abstract

To track moving tumor in real time, CyberKnife system imports a technique of the synchrony respiratory tracking system. The fiducial marker which are detectable in X-ray images were demand in CyberKnife Robotic radiosurgery system. It issued as reference markers to locate and track tumor location during patient alignment and treatment delivery. Fiducial marker implantation is an invasive surgical operation that carries a relatively high risk of pneumothorax. Most recently, it was developed a direct lung tumor registration method that does not require the use of fiducials. The purpose of this study is to measure the accuracy of target applying X-sight lung tracking using the Gafchromic film in dynamic moving thorax phantom. The X-sight Lung Tracking quality assurance motion phantom simulates simple respiratory motion of a lung tumor and provides Gafchromic dosimetry film-based test capability at locations inside the phantom corresponding to a typical lung tumor. The total average error for the X-sight Lung Tracking System with a moving target was $0.85{\pm}0.22$ mm. The results were considered reliable and applicable for lung tumor treatment in CyberKnife radiosurgery system. Clinically, breathing patterns of patients may vary during radiation therapy. Therefore, additional studies with a set real patient data are necessary to evaluate the target accuracy for the X-sight Lung Tracking system.

사이버나이프 로봇 방사선 수술 시스템은 환자를 치료하는 동안 환자의 내부 기준 마커를 이용하여 종양의 위치를 실시간으로 추적 할 수 있는 시스템이다. 최근 폐종양 치료의 경우 기준 마커의 삽입 없이 폐종양의 밀도 차이를 이용하여 실시간 종양 추적을 할 수 있는 폐종양추적시스템이 개발되어 치료에 적용되고 있다. 최근 개발되어 국내 최초 도입된 폐종양 추적치료시스템의 위치 추적 정확도의 분석은 동적흉부 팬톰과 GafChromic film을 이용하였다. 폐종양추적시스템을 이용하여 종양의 위치 추적 정확도는 평균 오차 $0.85{\pm}0.22$ mm로 분석되었다. 기준마커 삽입 없이 폐종양추적시스템을 이용하여 폐종양 치료에 매우 유용한 것으로 판단되었다.

Keywords

References

  1. Quiwen W, Radhe M: Algorithms and functionality of an intensity modulated radiotherapy optimization system. Med Phys 27:701-711 (2000) https://doi.org/10.1118/1.598932
  2. Iris CM, Pimkhuan K, Mi-Ryenong R, et al: Image-guided robotic radiosurgery for spinal metastases. Radiotherapy and Oncology 82:185-190 (2007) https://doi.org/10.1016/j.radonc.2006.11.023
  3. Richard IW, Richard C, Martin JM, et al: The annals of thoracic surgery. Ann Thorac Surg 75:1097-1101 (2003) https://doi.org/10.1016/S0003-4975(02)04681-7
  4. Hiroki S, Shinnichi S, Tatsuya K: Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int J Radiat Oncol Phys 48:1187-1195 (2000) https://doi.org/10.1016/S0360-3016(00)00748-3
  5. Norio K, Rikiya O, Yusuke S, et al: Real time tumor tracking radiotherapy for adrenal tumors. Radiotherapy and Oncology 87:418-424 (2008) https://doi.org/10.1016/j.radonc.2008.03.013
  6. Stece BJ: Technical aspects of image-guided respiratory-gated radiation therapy. Med Dosim 31:141-151 (2006) https://doi.org/10.1016/j.meddos.2005.12.005
  7. Jing Cai, Paul WR, Ke S: The effect of respiratory motion variability and tumor size on accuracy of average intensity projection from four-dimensional computed tomography: an investigation based on dynamic MRI. Med Phys 35:4974-4981 (2008) https://doi.org/10.1118/1.2982245
  8. ICRU Report 62: Prescribing, Recording, and Reporting Photon Beam Therapy. Internal Commission on Radiation Unit and Measurements, Bethesda (1999)
  9. Jurgen W, Jurgen M, Kurt B, et al: Tumor tracking and motion compensation with and adaptive tumor tracking system (ATTS): system description and prototype testing. Med Phys 35:3911-3921 (2008) https://doi.org/10.1118/1.2964090
  10. Cihat O, Cheng B, Saw, et al: Synchrony- Cyberknife respiratory compensation technology. Med Dosim 33:117-123 (2008) https://doi.org/10.1016/j.meddos.2008.02.004
  11. Mischa H, Jean BP, Joost N, et al: Clinical accuracy of the respiratory tumor tracking system of the cyberknife: assessment by of log files. Int J Radiat Oncol Biol Phys 74:297-303 (2009) https://doi.org/10.1016/j.ijrobp.2008.12.041
  12. Harold C: Treating Tumors that Move with Respiration. 1st ed. Springer Berlin Heidelberg, New York (2007), pp.265-282
  13. Martin JM: Fiducial-based targeting accuracy for external-beam radiotherapy. Med Phys 29:334-344 (2002) https://doi.org/10.1118/1.1448823
  14. Mikado I, Kochi Y, Hiroki S, et al: Insertion and fixation of fiducial markers for setup and tracking of lung tumor in radiotherapy. Int J Radiat Oncol Biol Phys 63:1442-1447 (2005) https://doi.org/10.1016/j.ijrobp.2005.04.024
  15. Dongshan F, Gopinath K, Vladimir M, et al: Automated skull tracking for the cyberknife image-guided radiosurgery system. Proc of SPIE 5744:366-377 (2005)
  16. Cynthia C, Arjun S, Letitia L, et al: Effects of residual target motion for image-tracked spine radiosurgery. Med Phys 34:4484-4490 (2007) https://doi.org/10.1118/1.2790587